10 research outputs found

    Native and graphene-coated flat and stepped surfaces of TiC

    Get PDF
    Titanium carbide attracts growing interest as a substrate for graphene growth and as a component of the composite carbon materials for supercapacitors, an electrode material for metal-air batteries. For all these applications, the surface chemistry of titanium carbide is highly relevant and being, however, insufficiently explored especially at atomic level is a subject of our studies. Applying X-ray photoelectron spectroscopy (XPS) to clean (111) and (755) surfaces of TiC, we were able to obtain the detailed spectroscopic pattern containing information on the plasmon structure, shake up satellite, the peak asymmetry and, finally, surface core level shift (SCLS) in C 1s spectra. The latter is essential for further precise studies of chemical reactions. Later on, we studied interface between TiC (111) and (755) and graphene and found the SCLS variation due to strong chemical interaction between graphene and substrate. This interaction is also reflected in the peculiar band structure of graphene probed by angle-resolved photoelectron spectroscopy (ARPES). Based on LEED data the structure is close to (7√3 × 7√3)R30°, with graphene being slightly corrugated. We found that similarly to the graphene on metals, the chemical interaction between graphene and TiC can be weakened by means of intercalation of oxygen atoms underneath graphene.We thank Helmholtz-Zentrum Berlin (HZB) for the allocation of synchrotron radiation beamtimes at the Russian-German and UE112-PGM2 beamlines. The work was financially supported by the Russian Science Foundation (project 16-42-01093). DFT calculations were performed at “Lomonosov” MSU supercomputer.Peer reviewe

    Creatinine Deiminase Adsorption onto Silicalite-Modified pH-FET for Creation of New Creatinine-Sensitive Biosensor

    Get PDF
    In the work, silicalite particles were used for the surface modification of pH-sensitive field-effect transistors (pH-FETs) with the purpose of developing new creatinine-sensitive biosensor. Creatinine deiminase (CD) adsorbed on the surface of silicalite-coated pH-FET served as a bioselective membrane. The biosensor based on CD immobilized in glutaraldehycie vapor (GA) was taken as control. The creatinine-sensitive biosensor obtained by adsorption on silicalite was shown to have better analytical characteristics (two-to threefold increased sensitivity to creatinine, three-to fourfold lesser response and recovery times, a decrease of the detection limit of creatinine determination to 5 mu m, etc.)

    Visualization of graphene grain boundaries through oxygen intercalation

    No full text
    Efficient control over the grain boundaries (GBs) is a vital aspect in optimizing the graphene growth conditions. A number of methods for visualization of GBs were developed for graphene grown on weakly interacting surfaces. Here, we utilize oxygen intercalation to reveal GBs and study their morphology for graphene strongly bound to the cobalt surface. We demonstrate that upon the intercalation of oxygen, GBs in polycrystalline graphene become easily detectable due to graphene cracking and selective oxidation of the substrate, thus giving a direct insight into the graphene micro- and nanostructure by means of different electron microscopy methods, including scanning electron microscopy, photoemission microscopy and low-energy electron microscopy
    corecore