8 research outputs found

    A Bayesian Logistic Regression approach in Asthma Persistence Prediction

    Get PDF
    Background: A number of models based on clinical parameters have been used for the prediction of asthma persistence in children. The number and significance of factors that are used in a proposed model play a cardinal role in prediction accuracy. Different models may lead to different significant variables. In addition, the accuracy of a model in medicine is really important since an accurate prediction of illness persistence may improve prevention and treatment intervention for the children at risk. Methods: Data from 147 asthmatic children were analyzed by a new method for predicting asthma outcome using Principal Component Analysis (PCA) in combination with a Bayesian logistic regression approach implemented by the Markov Chain Monte Carlo (MCMC). The use of PCA is required due to multicollinearity among the explanatory variables. Results: This method using the most appropriate models seems to predict asthma with an accuracy of 84.076% and 86.3673%, a Sensitivity of 84.96% and 87.25% and a Specificity of 83.22% and 85.52%, respectively. Conclusion: Our approach predicts asthma with high accuracy, gives steadier results in terms of positive and negative patients and provides better information about the influence of each factor (demographic, symptoms etc.) in asthma prediction

    Modeling andsimulationofspeedselectiononleftventricular assist devices

    Get PDF
    The control problem for LVADs is to set pump speed such that cardiac output and pressure perfusion are within acceptable physiological ranges. However, current technology of LVADs cannot provide for a closed-loop control scheme that can make adjustments based on the patient\u27s level of activity. In this context, the SensorART Speed Selection Module (SSM) integrates various hardware and software components in order to improve the quality of the patients\u27 treatment and the workflow of the specialists. It enables specialists to better understand the patient-device interactions, and improve their knowledge. The SensorART SSM includes two tools of the Specialist Decision Support System (SDSS); namely the Suction Detection Tool and the Speed Selection Tool. A VAD Heart Simulation Platform (VHSP) is also part of the system. The VHSP enables specialists to simulate the behavior of a patient?s circulatory system, using different LVAD types and functional parameters. The SDSS is a web-based application that offers specialists with a plethora of tools for monitoring, designing the best therapy plan, analyzing data, extracting new knowledge and making informative decisions. In this paper, two of these tools, the Suction Detection Tool and Speed Selection Tool are presented. The former allows the analysis of the simulations sessions from the VHSP and the identification of issues related to suction phenomenon with high accuracy 93%. The latter provides the specialists with a powerful support in their attempt to effectively plan the treatment strategy. It allows them to draw conclusions about the most appropriate pump speed settings. Preliminary assessments connecting the Suction Detection Tool to the VHSP are presented in this paper

    Evaluation of Bayesian classifiers in asthma exacerbation prediction after medication discontinuation

    No full text
    Abstract Objective The achievement of the optimal control of the disease is of cardinal importance in asthma treatment. As the control of the disease is sustained the medication should be gradually reduced and then stopped. Nevertheless, the discontinuation of asthma medication may lead to loss of disease control and eventually to an exacerbation of the disease. The goal of this paper is to examine the performance of Bayesian network classifiers in predicting asthma exacerbation based on several patient’s parameters such as objective measurements and medical history data. Results In this study several Bayesian network classifiers are presented and evaluated. It is shown that the proposed semi-naive network classifier with the use of Backward Sequential Elimination and Joining algorithm is able to predict if a patient will have an exacerbation of the disease after his last assessment with 93.84% accuracy and 90.9% sensitivity. In addition, the resulting structure and the conditional probability tables give a clear view of the probabilistic relationships between the used factors. This network may help the clinicians to identify the patients who are at high risk of having an exacerbation after stopping the medication and to confirm which factors are the most important

    Mixed Models as a Tool for Comparing Groups of Time Series in Plant Sciences

    No full text
    Plants adapt to continual changes in environmental conditions throughout their life spans. High-throughput phenotyping methods have been developed to noninvasively monitor the physiological responses to abiotic/biotic stresses on a scale spanning a long time, covering most of the vegetative and reproductive stages. However, some of the physiological events comprise almost immediate and very fast responses towards the changing environment which might be overlooked in long-term observations. Additionally, there are certain technical difficulties and restrictions in analyzing phenotyping data, especially when dealing with repeated measurements. In this study, a method for comparing means at different time points using generalized linear mixed models combined with classical time series models is presented. As an example, we use multiple chlorophyll time series measurements from different genotypes. The use of additional time series models as random effects is essential as the residuals of the initial mixed model may contain autocorrelations that bias the result. The nature of mixed models offers a viable solution as these can incorporate time series models for residuals as random effects. The results from analyzing chlorophyll content time series show that the autocorrelation is successfully eliminated from the residuals and incorporated into the final model. This allows the use of statistical inference

    Single equivalent dipole inverse electrocardiography based on ordinary 12 leads recordings

    No full text
    Summarization: The characterization of cardiac electric activity by equivalent electric sources including dipoles received a great research effort in the past. Recently these methods are revisited but exploiting a grid of multiple electrodes (up to 200), but these multi-lead electrodes are not widespread yet. Certainly, most hospitals and ordinary cardiology practice is still based on standard 12-lead ECG recordings. Exactly towards this aim is the effort put herein, hardly to exploit standard 12-lead ECG recordings to extract an equivalent electric dipole for the cardiac activity. Ultimately, this work aims at a trustworthy and very fast inverse ECG algorithm able to operate even with a simple standard ECG device available on an ambulance. This could contribute to early diagnosis as the type of heart malfunctioning during the patient transfer to the hospital.Παρουσιάστηκε στο: 4th Panhellenic Conference on Electronics and Telecommunication
    corecore