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A Bayesian approach in Asthma prediction

A Bayesian Logistic Regression approach in 
Asthma Persistence Prediction

ABSTRACT 

Background: Previous models based on a limited number of clinical parameters that have been used so far failed  
to exhibit high accuracy of prediction of asthma persistence in children. The number and significance of factors that 
are used in a proposed model play a cardinal role in prediction accuracy. Different models may lead to different 
significant variables. In addition, the accuracy of a model in medicine is really important since an accurate prediction 
of illness persistence may improve prevention and treatment intervention for the children at risk. The aim of this study 
is to evaluate a model that could effectively and accurately predict asthma persistence in children.
Methods: Data from 147 asthmatic children were analyzed by a new method for predicting asthma outcome using 
Principal Component Analysis (PCA) in combination with a Bayesian logistic regression approach implemented by 
the Markov Chain Monte Carlo (MCMC). The use of PCA is required due to multicollinearity among the explanatory 
variables. 
Results: This method using the most appropriate models seems to predict asthma with an accuracy of 84.076%, 
84.924%, 86.3673% and 86.1951%, a Sensitivity of 84.96%, 85.49%, 87.25% and 86.38% and a Specificity 
of 83.22%, 84.37%, 85.52% and 86.02% respectively. 
Conclusion: Our approach predicts asthma with high accuracy, gives steadier results in terms of positive and negative 
patients and provides better information about the influence of each factor (demographic, symptoms etc.) in asthma 
prediction.
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INTRODUCTION

Asthma is the most common chronic disease in 
childhood. The diagnosis of asthma at the preschool 
age and the prognosis of its persistence later in life is 

extremely challenging since wheezing is present in several 
heterogeneous disorders at this age [1,2,3]. It is now 
well known that approximately two thirds of the preschool 
wheezers no longer wheeze after the age of six years [2]. 
So far there are numerous efforts to identify factors related 

e12777-1



BIOSTATISTICSEpidemiology Biostatistics and Public Health - 2018, Volume 15, Number 1

A Bayesian approach in Asthma prediction

with asthma persistence and create prediction models using 
simple clinical and laboratory parameters of the asthmatic 
children [4,5,6,7,8]. The asthma predictive index (API) 
was one of the first clinical indices used for the prediction 
of asthma persistence beyond the preschool age [4]. Since 
then similar predicting models such as Isle of Wright score 
[5], ECA score [6] and PIAMA [8] have been introduced 
as a result of recent studies with substantial number of 
asthmatic children. Despite the simplicity and popularity 
of these scores their clinical usefulness was questioned 
by a number of recent studies as most of them have not 
a sufficient negative predictive power [3, 7, 9, 10]. The 
poor clinical performance of the above simple predictive 
models is actually not surprising. Most of them use a limited 
number of simple parameters such as frequency, duration 
or severity of wheezing episodes, presence of nasal 
symptoms, eczema or parental atopic disease [3] for the 
prediction of persistence of a disease such as asthma which 
presents an outstanding phenotypic and genetic variability 
so the number of factors affecting its prognosis is vast. So 
it is expectable that the use of more parameters that take 
into account the interaction of the environment with various 
genetic and phenotypic features of the disease will lead us 
to more complicated but more effective predictive values. As 
previous studies on disease prediction have shown, the use 
of statistical methods or machine learning techniques may 
enable the validation of multiple factors contributing to more 
accurate prognosis [11,12,13].

Logistic regression is a widespread method for the 
analysis and prediction of binary or categorical responses 
in biomedical studies. In many cases, when several 
predictor variables are present, strong correlations, which 
imply multicollinearity among them, make the prediction of 
a binary response difficult [14].

One approach that is widely used for dealing with 
multicollinearity is Principal Component Analysis (PCA) [15]. 
This method is also used for asthma persistence prediction 
in [11] combined with Least Squares Support Vector 
machine (LSSVM) classifiers. PCA has been used in several 
medical studies as in the case of evaluating the multivariate 
association between functional microvascular variables and 
clinical-laboratorial-anthropometrical measurements [16].

In Bayesian inference there have been also developed 
other techniques for variable selection such as the spike 
and slab priors, the horseshoe prior and the Bayesian Lasso 
[17,18,19]. These techniques make some assumptions 
about the prior distribution of the predictor variables. It is 
known, however, that the wrong choice of a prior distribution 
could lead to inadmissible and false posterior distributions 
in many cases. The dimensionality reduction by the PCA 
approach facilitates the making of assumptions about the 
prior distribution with reduced variables (scores) coefficients 
and therefore it is preferred over the other methods.

A Bayesian approach such as Bayesian logistic 
regression with the use of MCMC, leads to interesting 
results based on statistically significant variables resulting 

from the posterior distributions of the model coefficients. 
To our knowledge this study is the first to propose 

a model for predicting asthma persistence based on a 
Bayesian approach. Previous works [11,12,13] also 
predict asthma persistence accurately but the advantages 
of a Bayesian analysis may lead to even better results 
in the future. For example, an advantage of a Bayesian 
approach is the combination of prior information with data 
in such a way that we can include past information about a 
parameter and form a prior distribution for a future analysis 
with more observations [20]. Thus, when new observations 
become available, the previous posterior distributions can 
be used as priors. In this study a non - informative uniform 
prior and a weakly informative Cauchy prior have been 
selected due to lack of past information for the distribution 
of the coefficient values. Furthermore, Bayesian statistics 
have a straightforward way of dealing with nuisance 
parameters in such a way that if the posterior distribution 
of a parameter contains zero in the investigated credible 
interval then it can be extracted from the final model. Also, 
Bayesian methods have a single tool which is the Bayes 
theorem making them simpler, at least theoretically. On 
the opposite frequentist procedures may require a number 
of different tools [21]. The aim of the current study is to 
evaluate the accuracy of Bayesian analysis in asthma 
persistence prediction in children.

METHODS

Clinical Data

Data from 147 patients were gathered by the Paediatric 
Department of the University Hospital of Alexandroupolis, 
Greece during the period from 2008 to 2010. The history 
of each case was obtained by questionnaire. Those patients 
were diagnosed for asthma and were studied prospectively 
for seven years. 72 among them had persistent asthma. This 
dataset has 18 prognostic factors that have been derived 
by previous studies [22, 23, 24, 25, 26]. The prognostic 
factors and the patients’ characteristics are described in 
Table 1. The 18 variables inevitably will become 23, as 
the factor “seasonal symptoms” is a dummy variable with 
5 categories. The first category of seasonal symptoms can 
be removed because its information is included in the other 
5 categories (if a patient has a value of zero in all five 
remaining seasonal symptoms then he has obviously none 
seasonal symptoms).

Principal Component Analysis

Principal Component Analysis (PCA) is a technique 
used when strong correlations exist among the explanatory 
variables. The result of using this method is a set of 
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uncorrelated variables called scores, which have the same 
information as the original data. 

We select those variables which contribute for 95% of 
the total variability [27, 28]. 

Bayesian Logistic regression model 

At first the creation of a probability model for the 
available data is required. In this case an appropriate 
probability model is a Bernoulli distribution model. Then it 
is necessary to select a prior distribution. Subsequently, the 
likelihood function is multiplied with the prior distribution to 
designate the posterior distribution. Finally as the posterior 
distribution is estimated (simulated) by MCMC, the 
calculation of the parameter estimates is available [20].

Prior distribution 

We have no prior knowledge available for the 
parameters of the score – vectors. As a result the choice of 
the prior distribution becomes a challenge. In this case we 
can use a non – informative prior on the parameters of the 
score – vectors. Results of the Bayesian non – informative 
logistic regression approach tend to mimic a Maximum 
Likelihood approach, but we must observe that this non – 
informative approach on parameters of the scores is not non 
– informative on the parameters of the original variables. 
Also another choice can be a weakly informative Cauchy 
prior distribution with location parameter 0 and scale 
parameter 2.5 after the data matrix standardization and 
is proposed in [29]. This prior has many advantages that 
include the problem of dealing with complete separation 

TABLE 1. Prognostic factors and Patient Demographic and Disease characteristics

VARIABLES - FACTORS CHARACTERISTICS

Demographic Median IQR (Interquartile range)
Age, 10 4

Height(m) 1.42 0.22

Weight(kg) 38 22

Waist’s perimeter(cm) 69 14

Wheezing episodes
Until 3rd year 6 9

Between 3rd – 5th year 6 10

Symptoms Absolute Frequency Percentage
Wheezing 63 42.86%

Cough 81 55.1%

Allerghic rhinitis 40 27.21%

Allerghic Conjuctivitis 28 19.05%

Dyspnea 49 33.3%

Nasal Congestion 54 36.73%

Runny nose 44 29.93%

Seasonal Symptoms
None 70 47.62%

Winter 35 23.81%

Autumn 2 1.36%

Spring 8 5.44%

Summer 4 2.72%

>2 Seasons 28 19.05%

Pharmaceutical therapy
Antileukotriene 31 21.09%

Antihistamine 19 12.93%

Corticosteroids Inhaled 64 43.54%

Asthma
Treatment 77 52.38%

Diagnosis of Asthma Patients with persistent asthma: 72(48.98%) Patients with non-persistent asthma: 75(51.02%)
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and the application of more shrinkage to higher – order 
interactions [29]. Applying two different prior distributions 
will also give clues about the robustness of the method 
when the prior distribution is changed.

Markov Chain Monte Carlo method and Metropolis – 
Hastings algorithm

Often, the integrals that have to be solved to calculate 
the posterior distribution pose major difficulties. As the 
complexity of a problem or the number of the parameters 
increase, it becomes more difficult to deal with them using 
direct techniques.

Therefore, Markov Chain Monte Carlo (MCMC) 
techniques are proposed [30, 31]. MCMC techniques 
simulate values of random variables from the posterior 
distribution. A Markov Chain is constructed. The property 
of Markov Chain processes allow the next value of each 
parameter vector to depend on the current value but not 
on the previous one. The advantage of these methods 
depends on the fact that the simulation algorithm is 
repeated multiple times and as a result the approximation 
of the posterior distribution is improved at every step. Thus 
the posterior distributions can be approximated with high 
accuracy by the histogram or kernel – density estimates of 
the simulated values.

One of the most popular MCMC algorithms is the 
random – walk Metropolis – Hastings Algorithm with 
Gaussian proposals [30, 31, 32, 33]. The whole 
procedure was conducted in RGui 3.3.3 with the use of 
the “MCMCpack” package [34]. 

RESULTS

As we explained previously, in order to deal with 
multicollinearity among the explanatory variables PCA is 
used before the implementation of the Bayesian logistic 
regression model. In the first case of centering the data 
matrix 3 principal components describe more than 95% of 
the variation and in the case of standardizing 16 principal 
components describe the same amount of variation. After 
each MCMC simulation the simulated coefficients  are 
transformed back to the original coefficients  with the 
following equations.

or

or

where  is the data matrix,  is the loadings matrix 
and  is the scores matrix obtained by the PCA. 

It is important to mention that the data table has to be 
preprocessed before the analysis. When the variables are 
measured in different units, (as in the case of the asthma 
dataset) it is usual to standardize each variable. This is 
obtained by subtracting the mean from each variable and 
then dividing each variable by its standard deviation [35]. 

Another important issue in Bayesian Logistic regression 
is which parameters are going to be kept in the model. In 
this study our approach leads to a model in which none of 
the estimated coefficients contains zero in the 95% credible 
interval (Figures A1-A4 are given in Supplementary files ) 
of the coefficient posterior distribution, i.e. from the full 
model, we eliminate those variables whose 95% credible 
interval contains zero. Using the Metropolis – Hastings 
algorithm mentioned in the previous section with 100000 
MCMC samples with a burn - in period of 25000 samples 
and centering or standardizing the data matrix before the 
use of the Principal Component analysis, the results are 
shown in the models of Tables 2 (Models A and Model 
B) and 3 (Models C and D). Also it must be mentioned 
that a thinning interval equal to 10 was used to remove 
dependencies between successive simulations. It can be 
observed (from Tables 2-3) that the four variables are 
included in all models, but the models of Table 3 have a 
reduction in the standard errors of the coefficients (posterior 
means) as well as in the odds ratio. This change is due to 
the covariance matrix being different in case of centering 
or standardizing before PCA. 

The results of Table 2 and Table 3 are very similar 
leading us to the conclusion that the choice of the prior 
does not change them significantly and therefore the 
approach is robust.

In addition Figures A1-A4(see Supplementary files) show 
the posterior distribution of each coefficient (trace plot and 
density plot) that remains in the final form of the model in each 
case of the first approach described above. It seems that all the 
posterior distributions are approximate normal in both models. 

After fitting the models it is necessary to examine the 
performance of each model in order to decide which one 
is the most appropriate for asthma persistence prediction 
and moreover to evaluate the importance of the factors 
that affect asthma. A very common way to examine the 
ability of a model to predict accurately is the 10–fold 
cross–validation [36]. In 10-fold cross-validation, the 
original data matrix  is randomly partitioned into 10 
equal size subsamples. Afterwards 9 subsamples are used 
as the training dataset and the one subsample remaining 
is retained as the test dataset. The cross-validation process 
is then repeated 10 times, in such a way that all 10 
subsamples are used both as training and test dataset. This 
procedure must be repeated several times. In this study it 
was repeated 100 times for each model as it is important 
for a prognostic model to work sufficiently for patients other 
than those used for the fitting of the model [37].
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Then based on the following equation:

a prediction for the diagnosis of a new patient can be 
found. Since the dataset is balanced in terms of patients 
with persistent asthma (positive patients) and non-persistent 
asthma (negative patients) the threshold value for the 
predicted probabilities when the patients are classified 
is set 0.5. The sensitivity, the specificity, the positive 
predicted value (PPV), the negative predicted value (NPV) 
and the accuracy of the model are estimated using false 
positive (FP), false negative (FN), true positive (TP), and 
true negative (TN) values. The definitions of those accuracy 
measures are described in Table 4. [38, 39].

Those measures are very useful and provide us with 
important information about a patient. For example if a PPV 
of a disease prediction model is 90% then a patient with 
a positive test has a chance of 90% having the particular 

disease [38]. In addition, when the models have similar 
accuracy it is necessary to use extra criteria to decide 
which model is the most appropriate.

In Bayesian inference the most commonly used criteria 
are the Deviance Information Criterion (DIC) and the 
Widely Applicable Information Criterion (WAIC), which 
are defined in the following equations:

where  is the effective number of parameters in 
the model defined as:

TABLE 2. Posterior means and their standard errors for model coefficients β with centered data matrix X

Coefficients of Model A (uniform prior) Posterior mean Posterior standard error
Treatment 1.496234 0.7122792

Corticosteroids Inhaled 1.434193 0.7192093

Cough 2.218498 0.601882

Dyspnea 1.761561 0.663517

Coefficients of Model B (Cauchy Prior) Posterior mean Posterior standard error
Treatment 1.476835 0.655431

Corticosteroids Inhaled 1.396371 0.6517608

Cough 2.129355 0.5730888

Dyspnea 1.671632 0.6323252

TABLE 3. Posterior means and their standard errors for model coefficients β with standardized data matrix X

Coefficients of Model C (uniform prior) Posterior mean Posterior standard error
Treatment 0.9550956 0.1895476

Corticosteroids Inhaled 0.9026634 0.2214718

Antihistamine -0.7328311 0.3060576

Nasal Congestion 0.6755819 0.2944196

Cough 1.0100756 0.3191202

Dyspnea 0.9482515 0.3372774

Coefficients of Model D (Cauchy prior) Posterior mean Posterior standard error
Treatment 0.9269379 0.1824626

Corticosteroids Inhaled 0.8722235 0.215429

Antihistamine -0.6900618 0.3004151

Nasal Congestion 0.6480334 0.2804873

Cough 1.0001017 0.3123239

Dyspnea 0.9143336 0.3279823
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 is the log - likelihood of the data 
given the posterior means of the parameters . In 
equations 7 and 8, LPPD is the sum all over observations 
 of the logarithm of the expected value of the likelihoods 

for each sample from the posterior distribution of the 
parameters and  are known as penalty terms that 
are estimates of the effective number of parameters and 
are defined by [40,41]:

Two other measures that give some information about 
the model are the Pearson correlation coefficient between 
the actual values and the estimated probabilities of the 
model derived from equation (5) [42]and the root mean 
squared error of the validation sets. Those are defined as:

Finally, it is useful to check how the model predicts 
the negative values against the positive ones by means of:

If the model predicts positive and negative values the 
same, RMSE0 and RMSE1 should be almost equal.

Another method of model selection can be based on 
Bayes factors. In statistics, Bayes factors are a Bayesian 
alternative to hypothesis testing. For comparing two models 
1 and 2 it is calculated as [43]

where k is the number of the estimated parameters in 
the model, L is the maximum value of the likelihood function 
and N is the number of the observations in the dataset.

In Table 5 are described all the statistical measures 
for the performance of the models including the root mean 
squared error. The results show that the most appropriate 
Bayesian model according to DIC and WAIC 1 and 2 is 
the model D of Table 3. Also in terms of RMSE0 and RMSE1, 
model D is again the most appropriate because the difference 
between those two values is the least. It is interesting to note 
that model B of Table 2 is the most appropriate according 
to the Bayes factors. This is of high significance because it 
shows the importance of the 4 variables that determine the 
model. The Bayes factor between models B and A is equal 
to 1.047, between models B and C 1.138 and between 
models B and D is equal to 1.077 which suggests that 
model B is slightly favored by the data.

Cough and dyspnea were also identified as significant 
in the ridge logistic regression model for asthma [13] 
revealing the importance of those symptoms combined in 
asthma persistence. In addition, residual diagnostics can 
be provided in order to check the validity of the models. 
For that reason the randomized quantile residuals (RQR) 
can be used because of their appropriateness in logistic 
regression problems [44]. The residuals for all models 
approximate the standard normal and this is confirmed by 
the powerful Anderson – Darling test (A-D test) [45].

TABLE 4. Definition of accuracy measures as they are applied in the asthma prediction models.

Sensitivity Proportion of children with active asthma who were correctly classified by the model as being at risk.

Specificity Proportion of children without active asthma who were correctly classified by the model as not being at risk.

Positive predictive value Proportion of children who were classified by the model as being at risk and developed active asthma

Negative predictive value Proportion of children who were classified by the model as not being at risk and did not develop active asthma.

Positive Likelihood Ratio (LR+) The probability of a child with disease having a positive test divided by the probability of an individual without 
disease having a positive test. 

Negative Likelihood ratio(LR-) The probability of a child with disease having a negative test divided by the probability of an individual without 
disease having a negative test.
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DISCUSSION

The main finding of our study is that Bayesian analysis 
exhibited high accuracy (approximately 86%) in asthma 
persistence prediction in children. Bayesian techniques are 
becoming very popular in the field of medicine [46]. Our 
study proposes a method based on Bayesian inference 
for asthma persistence prediction in real time data. The 
model, which according to DIC and WAIC is the most 
appropriate Bayesian model, predicts asthma with an 
accuracy of 86.19505% a PPV of 85.53547% and a 
NPV of 86.83853%. 

Additionally, the novelty of this method is that 
the model coefficients contain information from all the 
available variables used, despite that we require only 4 to 
make a prediction. Also important results are the stability of 
the model between positive and negative prediction and 
the good values of LR+ and LR-. 

It should be mentioned that it is quite difficult to 
compare the results of the prediction of the statistical 
models with that of the simple models used in clinical 
practice. However the inability of the existing simple clinical 
prediction models using four to eight disease parameters to 
achieve substantially high prediction accuracy [3] has led 
to the increasing scientific interest in alternative methods of 
analysis of asthma persistence.

Currently available asthma predictive models are 
based on non-invasive clinical and laboratory parameters 
[3]. The most popular of the predictive indices is the 
Asthma Predictive Index (API) introduced in 2000 by 
Castro-Rodriguez et. al. [4]. The use of the loose API 

seems that is not successful in either identifying or ruling out 
later asthma in children [3]. Additionally, recent validation 
of the stringiest API revealed that this index presented a 
LR- of 0.8-0.9 and a LR+ of 4.9-7.4, indicating that this 
index is also not appropriate to rule out later asthma in 
preschool wheezers [3]. Similarly the Isle of Wight score 
presented an acceptable LR+ but unacceptably high LR- 
and a false negative rate of 90.The performance of ECA 
severity score was similar while contrary to the previous 
models, PIAMA score performance seems to be grossly 
affected by the cut-offs used for the prediction [3]. The use 
of the lower cutoff of PIAMA score resulted in high false 
positive predictive rate but good ability to rule out later 
asthma while higher cut-offs of the same score resulted in 
good LR+ of 6.3 and a poor LR- of 0.8 indicating inability 
to exclude later disease [3]. As a result it is obvious that 
the presented models are much better in terms of the LRs 
both positive and negative.

Moreover studies that have validated the above 
mentioned predictive models in different cohorts (broad 
validation) concluded that the performance of clinical 
scores such as API [9] and PIAMA [10] in clinical settings 
were modest.

In recent studies for asthma persistence prediction 
alternative methods of analysis and prediction have been 
developed. Support Vector Machnes (SVM), RLR and 
Artificial Neural Networks (ANNs) are some methods 
based in statistical and artificial intelligence techniques 
used for the classification of asthma patients using multiple 
prognostic factors such as demographic, wheezing 
episodes, symptoms, pharmaceutical therapy, breathing 

TABLE 5. Accuracy measures for the models of Tables 2 - 3.

Repeats of 10-fold cross validation 100 100 100 100

Accuracy measures Model A Model B Model C Model D
Accuracy 84.07609 84.92339 86.36735 86.19505

PPV 82.94709 84.00492 85.26059 85.53547

NPV 85.21317 85.8365 87.47954 86.83853

Sensitivity 84.96158 85.49979 87.25 86.3764

Specificity 83.22572 84.36999 85.52 86.02151

LR+ 5.065 5.470233 6.0255 6.179235

LR- 0.1807 0.1718645 0.1491 0.1583743

MSE over the test set 0.1242153 0.1155709 0.1071281 0.1048957

RMSE over the test set 0.3524419 0.3399573 0.3273043 0.3238761

DIC 99.18288 98.45763 91.15783 90.89677

WAIC 1 99.24836 98.4076 91.39442 90.98076

WAIC 2 99.89265 98.93421 92.47293 91.94984

BIC 111.0227 110.9308 111.1893 111.0788

R 0.7141177 0.7359201 0.7589249 0.7633664

RMSE0 0.3701722 0.3596769 0.3391169 0.332138

RMSE1 0.3329774 0.3181209 0.3145281 0.3149454
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tests and parental history but with a smaller number of 
observations. The similarity with our results follows from the 
fact that a subset of variables is included in the final models 
as well, which makes them to be sufficient [47, 48, 49].

One of the disadvantages of ANNs when compared 
to Bayesian models is related to the fact that ANNs 
frequently have difficulty analyzing systems with a large 
number of inputs due to the excess time required to train 
the system and possibly the over-fitting of the model during 
the training time [50].

SVM is a classification and regression prediction tool 
that uses machine learning theory to maximize predictive 
accuracy [47]. An important advantage is that it is 
automatically implemented avoiding the problem of over 
- fitting [51]. Despite the fact that it may achieve high 
accuracy in asthma prediction [11], SVM has some major 
disadvantages. The most important are the selection of 
the parameters of the kernel function, the high algorithmic 
complexity and the extensive memory requirements [52, 
53]. In addition a comparison with those machine learning 
techniques using the same dataset and with 100 repeats 
of 10 fold cross – validation is provided. The results of this 
comparison are presented in Table 6. The ANN that was 
used for this simulation has 1 hidden layer with 6 neurons 
with tan – sigmoid and saturated linear activation functions. 
The LSSVM method uses Radial Basis Function Kernels. A 
range of different kernel widths for the Radial Basis kernel 
function was used to obtain the best LSSVM classifier in 
each case. The results show that the Bayesian models are 
slightly superior in terms of accuracy measures. In addition 
the increase in the accuracy measures when only 6 or 4 
variables are included in ANNs and SVMs shows that 
the selection of those variables from the Bayesian models 
is in good agreement. Finally in comparison with Ridge 
Logistic regression, the Bayesian Logistic model exhibits 
more stable results between negative (non – persistent 
asthma) and positive patients (persistent asthma) and fewer 
factors are included in the final form of the model. The 
discriminative power of the proposed models can also 
be seen in the Receiver Operating Characteristic (ROC) 

curves presented in Figure 1. This shows that Models C 
and D (green and blue line) have the highest area under 
curve (AUC equal to 91.59% and 91.75% respectively) 
and perform better at almost all regions.

In this study, the Bayesian PCA logistic regression 
model is applied. As mentioned above, the advantage 
of this model is its simplicity as it depends only on the 
Bayes formula. Furthermore, the fact that we do not have 
past information about the data in this study lead us to 
use a non – informative and a weakly informative prior 
distribution. Although this choice seems now to be a 
disadvantage, in the future this approach will become 
more interesting as it is possible, with the availability of 
new data, to use as prior the posterior distributions of this 
work leading to even better results.

Another advantage of great importance is that the 
Bayesian PCA logistic model exhibits high accuracy 
including only a small subset of explanatory factors. All the 
other models that have been used either are computationally 

TABLE 6. Comparison of Bayesian Models with Machine Learning Techniques using accuracy measures.

Model Accuracy Sensitivity Specificity
Model A 84.07609 84.96158 83.22572

Model B 84.92339 85.49979 84.36999

Model C 86.36735 87.25 85.52

Model D 86.19505 86.3764 86.02151

ANN(22 inputs) 80.58 79.37 81.80

ANN(6 inputs) 83.46 82.37 84.58

ANN(4 inputs) 82.04 79.81 84.4

LSSVM (22 inputs) 79.70714 79.82011 79.59758

LSSVM (6` inputs) 84.8 87.54381 82.17282

LSSVM (4 inputs) 84.16405 86.59287 81.93451

FIGURE 1. ROC curves of the models of TABLE 6.
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heavy with large memory requirements (SVMs, ANNs) or 
they include a large amount of information that may not be 
needed (RLR) [11, 12, 13].

Moreover, important advantages are that our model 
is more stable and balanced in terms of positive and 
negative patients which is indicated by the classification 
measures, is very simple to use (only 4 or 6 variables 
required) and has a high accuracy and sensitivity. 

CONCLUSION

To conclude despite the fact that no prior knowledge 
about the distribution of the variables was available, this 
Bayesian model predicts asthma with high accuracy and 
gives many clues about the significance and importance 
of each factor in asthma persistence prediction. Given the 
known disappointing results of the existing clinical indices 
in asthma persistence prognosis, alternative models that 
utilize more effectively many disease parameters should 
be tested in clinical practice, since as we have shown, 
their accuracy seem to be extremely high despite the fact 
that these statistical models might present difficulties at the 
interpretation by the clinical doctor.

As far as for future research, an interesting prospect 
will be to check if there is an increase of the accuracy 
when we include more patients in the dataset, using the 
posteriors from this study as priors for the new dataset. 
Finally, it would also be important to check if asthma, 
from a statistical point of view, is affected by regional 
parameters, such as climate and environmental factors.
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SUPPLEMENTARY FILES

1. TRACE AND DENSITY PLOTS

FIGURE A1. Trace and density plots of the regression coefficients β for model A.
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FIGURE A2. Trace and density plots of the regression coefficients β for model B.
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FIGURE A3. Trace and density plots of the regression coefficients β for model C
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FIGURE A4. Trace and density plots of the regression coefficients β for model D.
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