80 research outputs found
Effects of enramycin and sodium monensin on dry matter intake, ruminal fermentation and alimentary behavior in bovine fed high-concentrate diets
Estudaram-se os efeitos da administração de enramicina e monensina sódica no consumo de matéria seca (MS), na fermentação ruminal e no comportamento alimentar de bovinos. Doze fêmeas bovinas não-gestantes e não-lactantes (675 ± 63 kg PC) foram distribuídas inteiramente ao acaso em três tratamentos, formados por um grupo controle, um grupo tratado com enramicina e outro tratado com monensina. Os animais foram alimentados com dieta contendo 60% de concentrado (milho, farelo de soja e minerais) e 40% de volumoso (cana-de-açúcar). A enramicina foi administrada na dose de 20 mg/animal/dia e a monensina na dose de 300 mg/animal/dia. O experimento teve duração total de 21 dias, de modo que o 21º dia foi utilizado para coleta de líquido ruminal, realizada às 0, 2, 4, 6, 8, 10 e 12 horas após a primeira refeição. A monensina aumentou a concentração total de AGV 12 horas após a alimentação, em relação aos demais tratamentos, e diminuiu a relação acético:propiônico nos tempo 0 e 6 horas, em relação à enramicina, mas não em relação ao controle. Nenhum dos antibióticos testados alterou a proporção molar dos ácidos acético, propiônico ou butírico nem o pH e a concentração ruminal de nitrogênio amoniacal. Os antibióticos também não alteraram o consumo de MS ou o comportamento ingestivo, avaliado nas atividades de alimentação, ruminação e ócio.The objective of this research was to study the effects of enramycin and sodium monensin administration on dry matter intake, ruminal fermentation and alimentary behavior in bovine. Twelve non-pregnant and non-lactating cows (675 kg ± 63 of BW) were randomly assigned to three treatments: control group, enramycin treated group or monensin treated group. Animals received a diet containing 60% of concentrates (corn, soybean meal and minerals) and 40% of forage (sugarcane). Treatments were 20 mg/animal/day of enramycin and 300 mg/animal/day of monensin. Trial lasted 21 days, and at the 21st was used for ruminal fluid sampling at 0, 2, 4, 6, 8, 10 and 12 hours after 1st meal. Monensin increased total VFA concentration 12 h after feeding in relation to others treatments and decreased the acetic:propionic ratio at times 0 and 6 h, in relation to enramycin, but not when compared to control. The two ionophores tested did not influence the molar proportion of acetic, propionic or butyric acids, pH, ammoniacal-N concentration, or DM intake and intake behavior, evaluated during activities of feeding, rumination and idleness
Gluconeogenic supplements do not affect production, reproductive traits and blood metabolite of holstein cows during the transition period
The use of gluconeogenic supplements for dairy cows during the transition period has produced contradictory responses in the literature, making it difficult to recommend them. The objective of this trial was to evaluate supplementation with propylene glycol (PG), calcium propionate (CP), and "Dairy Power Drench®" (DR) on the transitional period of Holstein cows. Parameters studied were variation of body condition score (BCS), body weight (BW), milk production (MP), reproductive efficiency and nonesterified fatty acid concentration (NEFA). One hundred and sixty five animals from two commercial herds were used. Treatments consisted of: C- Control; DR- administration of "Dairy Power Drench®" (3 applications) during postpartum; CP- daily administration of calcium propionate (500 g); PG- daily administration of propylene glycol (500 mL). Variation sources studied were the effect of treatments and blocks as function of farm and parity. No interaction between time (weeks) and treatments, or treatment effects, were found for BCS. However, there was a quadratic effect of time. Body weight and its variation were not affected by treatment nor by the time × treatment interaction. However, a quadratic effect of time was observed. An interaction time × treatment was observed on MP, but possible differences within each week were not detected. Treatments also did not affect reproductive efficiency parameters. On average, the number of days to first detected postpartum estrus was 69.5, with 2.23 services per conception and 172.6 days open. The mean concentration of nonesterified fatty acids was 376.6 mmol L-1 and no effect of the interaction time × treatment, or of treatment, was observed. However, a linear effect was observed with time, with a decrease of 48.2 mmol L-1 per week.O uso de produtos gliconeogênicos para vacas leiteiras no período de transição tem gerado respostas contraditórias na literatura, dificultando a sua recomendação. O objetivo deste experimento foi avaliar a suplementação de propileno glicol (PG), propionato de cálcio (PC) e "Dairy Power Drench®" (DR) no período de transição de vacas leiteiras sobre a variação do escore da condição corporal (ECC), peso vivo (PV), produção de leite (PL), eficiência reprodutiva e concentração plasmática dos ácidos graxos livres (AGL). Foram utilizadas 165 fêmeas de dois rebanhos comerciais. Os tratamentos foram: C- Controle; DR- 3 aplicações de "Dairy Power Drench®" no pós-parto; PC- 500 g diários de PC e PG- 500 mL diários de PG, até o 50º dia pós-parto, em média. As causas de variação estudadas foram efeito de tratamento e efeito dos blocos formados em função da fazenda e do número de partos. Não foi observado efeito de interação de tempo (semanas) × tratamento ou de tratamento sobre ECC. Entretanto, houve efeito quadrático de tempo. Para o PV e variação diária de PV não foi observado efeito dos tratamentos, nem interação entre tempo × tratamento. Entretanto, apresentaram efeito quadrático de tempo. Para PL, houve efeito de interação tempo × tratamento. Porém, dentro de cada semana, as possíveis diferenças não foram detectadas. Os tratamentos não afetaram os parâmetros de eficiência reprodutiva. Encontraram-se, em média, 69,5 dias para o aparecimento do primeiro cio, 2,23 serviços por concepção e 172,6 dias para o período de serviço. As concentrações médias dos AGL foram de 376,6 mmol L-1, não se observando efeitos de tempo × tratamento ou de tratamento. Porém, apresentaram efeito linear de tempo, decrescendo 48,2 mmol L-1 por semana
Qualitative Research in Nursing: Bibliometric Study
In this study, we explored the production of qualitative nursing research in program repositories evaluated by the Coordination for the Improvement of Higher Education Personnel in Brazil, with concepts six and seven. We utilized a bibliometric study in which we considered Brazilian theses and dissertations with qualitative methodology published in 2018 and 2019 with qualitative methodology. In the 100 papers, 79 theses, and 13 dissertations, we identified that the types of studies that stood out were phenomenology, the wording of the objectives predominantly used the verbs “understand,” and “analyze,” and the instruments and techniques used were semi-structured interviews which present the analysis technique of the author Bardin, highlighting publications on public health. We conclude that our study evidences the importance of using a qualitative approach in nursing and emphasizes the need to pay attention to the theoretical framework, as well as analysis aspects adopted in different types of qualitative studies
Machine Learning-Based Routine Laboratory Tests Predict One-Year Cognitive and Functional Decline in a Population Aged 75+ Years
BACKGROUND: Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study.
METHOD: One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features.
RESULTS: The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92).
CONCLUSIONS: Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms
Landing-Takeoff Asymmetries Applied to Running Mechanics: A New Perspective for Performance
Background:Elastic bouncing is a physio-mechanical model that can elucidate running behavior in different situations, including landing and takeoff patterns and the characteristics of the muscle-tendon units during stretch and recoil in running. An increase in running speed improves the body’s elastic mechanisms. Although some measures of elastic bouncing are usually carried out, a general description of the elastic mechanism has not been explored in running performance. This study aimed to compare elastic bouncing parameters between the higher- and lower-performing athletes in a 3000 m test.Methods:Thirty-eight endurance runners (men) were divided into two groups based on 3000 m performance: the high-performance group (Phigh; n = 19; age: 29 ± 5 years; mass: 72.9 ± 10 kg; stature: 177 ± 8 cm; 3000time: 656 ± 32 s) and the low-performance group (Plow; n = 19; age: 32 ± 6 years; mass: 73.9 ± 7 kg; stature: 175 ± 5 cm; 3000time: 751 ± 29 s). They performed three tests on different days: (i) 3000 m on a track; (ii) incremental running test; and (iii) a running biomechanical test on a treadmill at 13 different speeds from 8 to 20 km h−1. Performance was evaluated using the race time of the 3000 m test. The biomechanics variables included effective contact time (tce), aerial time (tae), positive work time (tpush), negative work time (tbreak), step frequency (fstep), and elastic system frequency (fsist), vertical displacement (Sv) in tce and tae (Sce and Sae), vertical force, and vertical stiffness were evaluated in a biomechanical submaximal test on treadmill.Results:The tae, fsist, vertical force and stiffness were higher (p < 0.05) and tce and fstep were lower (p < 0.05) in Phigh, with no differences between groups in tpush and tbreak.Conclusion:The elastic bouncing was optimized in runners of the best performance level, demonstrating a better use of elastic components
Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis
Latin America and Caribbean (LAC) is a developing region characterized for its importance for global food security, producing 23 and 11% of the global beef and milk production, respectively. The region's ruminant livestock sector however, is under scrutiny on environmental grounds due to its large contribution to enteric methane (CH4) emissions and influence on global climate change. Thus, the identification of effective CH4 mitigation strategies which do not compromise animal performance is urgently needed, especially in context of the Sustainable Development Goals (SDG) defined in the Paris Agreement of the United Nations. Therefore, the objectives of the current study were to: 1) collate a database of individual sheep, beef and dairy cattle records from enteric CH4 emission studies conducted in the LAC region, and 2) perform a meta-analysis to identify feasible enteric CH4 mitigation strategies, which do not compromise animal performance. After outlier's removal, 2745 animal records (65% of the original data) from 103 studies were retained (from 2011 to 2021) in the LAC database. Potential mitigation strategies were classified into three main categories (i.e., animal breeding, dietary, and rumen manipulation) and up to three subcategories, totaling 34 evaluated strategies. A random effects model weighted by inverse variance was used (Comprehensive Meta-Analysis V3.3.070). Six strategies decreased at least one enteric CH4 metric and simultaneously increased milk yield (MY; dairy cattle) or average daily gain (ADG; beef cattle and sheep). The breed composition F1 Holstein × Gyr decreased CH4 emission per MY (CH4IMilk) while increasing MY by 99%. Adequate strategies of grazing management under continuous and rotational stocking decreased CH4 emission per ADG (CH4IGain) by 22 and 35%, while increasing ADG by 22 and 71%, respectively. Increased dietary protein concentration, and increased concentrate level through cottonseed meal inclusion, decreased CH4IMilk and CH4IGain by 10 and 20% and increased MY and ADG by 12 and 31%, respectively. Lastly, increased feeding level decreased CH4IGain by 37%, while increasing ADG by 171%. The identified effective mitigation strategies can be adopted by livestock producers according to their specific needs and aid LAC countries in achieving SDG as defined in the Paris Agreement.Fil: Congio, Guilhermo Francklin de Souza. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; Brasil. Corporación Colombiana de Investigación Agropecuaria; ColombiaFil: Bannink, André. University of Agriculture Wageningen; Países BajosFil: Mayorga Mogollón, Olga Lucía. Corporación Colombiana de Investigación Agropecuaria; ColombiaFil: Jaurena, Gustavo. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal. Cátedra de Nutrición Animal; ArgentinaFil: Gonda, Horacio Leandro. Uppsala Universitet; SueciaFil: Gere, José Ignacio. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología Veterinaria - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Patobiología Veterinaria; ArgentinaFil: Cerón Cucchi, María Esperanza. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tieri, María Paz. Universidad Tecnológica Nacional. Facultad Regional Rafaela; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación de la Cadena Láctea. - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela. Instituto de Investigación de la Cadena Láctea; ArgentinaFil: Hernandez, Olegario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Tucuman-Santiago del Estero; ArgentinaFil: Ricci, Patricia. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Balcarce. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible. Grupo Vinculado Estacion Experimental Agropecuaria Cuenca del Salado Al Ipads | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible. Grupo Vinculado Estacion Experimental Agropecuaria Cuenca del Salado Al Ipads.; ArgentinaFil: Juliarena, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Lombardi, Banira. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Abdalla, Adibe Luiz. Universidade de Sao Paulo; BrasilFil: Abdalla Filho, Adibe Luiz. Universidade de Sao Paulo; BrasilFil: Berndt, Alexandre. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Oliveira, Patrícia Perondi Anchão. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Henrique, Fábio Luis. Colegios Asociados de Uberaba; BrasilFil: Monteiro, Alda Lúcia Gomes. Universidade Federal do Paraná; BrasilFil: Borges, Luiza Ilha. Universidade Federal do Paraná; BrasilFil: Ribeiro Filho, Henrique Mendonça Nunes. Universidade Federal de Santa Catarina; BrasilFil: Ribeiro Pereira, Luiz Gustavo. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Tomich, Thierry Ribeiro. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Campos, Mariana Magalhães. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Machado, Fernanda Samarini. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Marcondes, Marcos Inácio. Universidade Federal de Viçosa.; BrasilFil: Mercadante, Maria Eugênia Zerlotti. Agencia de Tecnología Agroindustrial de Sao Paulo; ArgentinaFil: Sakamoto, Leandro Sannomiya. Agencia de Tecnología Agroindustrial de Sao Paulo; ArgentinaFil: Albuquerque, Lucia Galvão. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Carvalho, Paulo César de Faccio. Universidade Federal do Rio Grande do Sul; BrasilFil: Hristov, Alexander Nikolov. State University of Pennsylvania; Estados Unidos. University of Agriculture Wageningen; Países Bajos. Universidade de Sao Paulo; Brasil. Corporación Colombiana de Investigación Agropecuaria; Colombi
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
- …