93 research outputs found

    Optimal Distributed Scheduling in Wireless Networks under the SINR interference model

    Full text link
    Radio resource sharing mechanisms are key to ensuring good performance in wireless networks. In their seminal paper \cite{tassiulas1}, Tassiulas and Ephremides introduced the Maximum Weighted Scheduling algorithm, and proved its throughput-optimality. Since then, there have been extensive research efforts to devise distributed implementations of this algorithm. Recently, distributed adaptive CSMA scheduling schemes \cite{jiang08} have been proposed and shown to be optimal, without the need of message passing among transmitters. However their analysis relies on the assumption that interference can be accurately modelled by a simple interference graph. In this paper, we consider the more realistic and challenging SINR interference model. We present {\it the first distributed scheduling algorithms that (i) are optimal under the SINR interference model, and (ii) that do not require any message passing}. They are based on a combination of a simple and efficient power allocation strategy referred to as {\it Power Packing} and randomization techniques. We first devise algorithms that are rate-optimal in the sense that they perform as well as the best centralized scheduling schemes in scenarios where each transmitter is aware of the rate at which it should send packets to the corresponding receiver. We then extend these algorithms so that they reach throughput-optimality

    Cluster-Aided Mobility Predictions

    Full text link
    Predicting the future location of users in wireless net- works has numerous applications, and can help service providers to improve the quality of service perceived by their clients. The location predictors proposed so far estimate the next location of a specific user by inspecting the past individual trajectories of this user. As a consequence, when the training data collected for a given user is limited, the resulting prediction is inaccurate. In this paper, we develop cluster-aided predictors that exploit past trajectories collected from all users to predict the next location of a given user. These predictors rely on clustering techniques and extract from the training data similarities among the mobility patterns of the various users to improve the prediction accuracy. Specifically, we present CAMP (Cluster-Aided Mobility Predictor), a cluster-aided predictor whose design is based on recent non-parametric bayesian statistical tools. CAMP is robust and adaptive in the sense that it exploits similarities in users' mobility only if such similarities are really present in the training data. We analytically prove the consistency of the predictions provided by CAMP, and investigate its performance using two large-scale datasets. CAMP significantly outperforms existing predictors, and in particular those that only exploit individual past trajectories

    Learning to Personalize in Appearance-Based Gaze Tracking

    Full text link
    Personal variations severely limit the performance of appearance-based gaze tracking. Adapting to these variations using standard neural network model adaptation methods is difficult. The problems range from overfitting, due to small amounts of training data, to underfitting, due to restrictive model architectures. We tackle these problems by introducing the SPatial Adaptive GaZe Estimator (SPAZE). By modeling personal variations as a low-dimensional latent parameter space, SPAZE provides just enough adaptability to capture the range of personal variations without being prone to overfitting. Calibrating SPAZE for a new person reduces to solving a small optimization problem. SPAZE achieves an error of 2.70 degrees with 9 calibration samples on MPIIGaze, improving on the state-of-the-art by 14 %. We contribute to gaze tracking research by empirically showing that personal variations are well-modeled as a 3-dimensional latent parameter space for each eye. We show that this low-dimensionality is expected by examining model-based approaches to gaze tracking. We also show that accurate head pose-free gaze tracking is possible

    Lipschitz Bandits: Regret Lower Bounds and Optimal Algorithms

    Full text link
    We consider stochastic multi-armed bandit problems where the expected reward is a Lipschitz function of the arm, and where the set of arms is either discrete or continuous. For discrete Lipschitz bandits, we derive asymptotic problem specific lower bounds for the regret satisfied by any algorithm, and propose OSLB and CKL-UCB, two algorithms that efficiently exploit the Lipschitz structure of the problem. In fact, we prove that OSLB is asymptotically optimal, as its asymptotic regret matches the lower bound. The regret analysis of our algorithms relies on a new concentration inequality for weighted sums of KL divergences between the empirical distributions of rewards and their true distributions. For continuous Lipschitz bandits, we propose to first discretize the action space, and then apply OSLB or CKL-UCB, algorithms that provably exploit the structure efficiently. This approach is shown, through numerical experiments, to significantly outperform existing algorithms that directly deal with the continuous set of arms. Finally the results and algorithms are extended to contextual bandits with similarities.Comment: COLT 201
    corecore