93 research outputs found
Optimal Distributed Scheduling in Wireless Networks under the SINR interference model
Radio resource sharing mechanisms are key to ensuring good performance in
wireless networks. In their seminal paper \cite{tassiulas1}, Tassiulas and
Ephremides introduced the Maximum Weighted Scheduling algorithm, and proved its
throughput-optimality. Since then, there have been extensive research efforts
to devise distributed implementations of this algorithm. Recently, distributed
adaptive CSMA scheduling schemes \cite{jiang08} have been proposed and shown to
be optimal, without the need of message passing among transmitters. However
their analysis relies on the assumption that interference can be accurately
modelled by a simple interference graph. In this paper, we consider the more
realistic and challenging SINR interference model. We present {\it the first
distributed scheduling algorithms that (i) are optimal under the SINR
interference model, and (ii) that do not require any message passing}. They are
based on a combination of a simple and efficient power allocation strategy
referred to as {\it Power Packing} and randomization techniques. We first
devise algorithms that are rate-optimal in the sense that they perform as well
as the best centralized scheduling schemes in scenarios where each transmitter
is aware of the rate at which it should send packets to the corresponding
receiver. We then extend these algorithms so that they reach
throughput-optimality
Cluster-Aided Mobility Predictions
Predicting the future location of users in wireless net- works has numerous
applications, and can help service providers to improve the quality of service
perceived by their clients. The location predictors proposed so far estimate
the next location of a specific user by inspecting the past individual
trajectories of this user. As a consequence, when the training data collected
for a given user is limited, the resulting prediction is inaccurate. In this
paper, we develop cluster-aided predictors that exploit past trajectories
collected from all users to predict the next location of a given user. These
predictors rely on clustering techniques and extract from the training data
similarities among the mobility patterns of the various users to improve the
prediction accuracy. Specifically, we present CAMP (Cluster-Aided Mobility
Predictor), a cluster-aided predictor whose design is based on recent
non-parametric bayesian statistical tools. CAMP is robust and adaptive in the
sense that it exploits similarities in users' mobility only if such
similarities are really present in the training data. We analytically prove the
consistency of the predictions provided by CAMP, and investigate its
performance using two large-scale datasets. CAMP significantly outperforms
existing predictors, and in particular those that only exploit individual past
trajectories
Learning to Personalize in Appearance-Based Gaze Tracking
Personal variations severely limit the performance of appearance-based gaze
tracking. Adapting to these variations using standard neural network model
adaptation methods is difficult. The problems range from overfitting, due to
small amounts of training data, to underfitting, due to restrictive model
architectures. We tackle these problems by introducing the SPatial Adaptive
GaZe Estimator (SPAZE). By modeling personal variations as a low-dimensional
latent parameter space, SPAZE provides just enough adaptability to capture the
range of personal variations without being prone to overfitting. Calibrating
SPAZE for a new person reduces to solving a small optimization problem. SPAZE
achieves an error of 2.70 degrees with 9 calibration samples on MPIIGaze,
improving on the state-of-the-art by 14 %. We contribute to gaze tracking
research by empirically showing that personal variations are well-modeled as a
3-dimensional latent parameter space for each eye. We show that this
low-dimensionality is expected by examining model-based approaches to gaze
tracking. We also show that accurate head pose-free gaze tracking is possible
Lipschitz Bandits: Regret Lower Bounds and Optimal Algorithms
We consider stochastic multi-armed bandit problems where the expected reward
is a Lipschitz function of the arm, and where the set of arms is either
discrete or continuous. For discrete Lipschitz bandits, we derive asymptotic
problem specific lower bounds for the regret satisfied by any algorithm, and
propose OSLB and CKL-UCB, two algorithms that efficiently exploit the Lipschitz
structure of the problem. In fact, we prove that OSLB is asymptotically
optimal, as its asymptotic regret matches the lower bound. The regret analysis
of our algorithms relies on a new concentration inequality for weighted sums of
KL divergences between the empirical distributions of rewards and their true
distributions. For continuous Lipschitz bandits, we propose to first discretize
the action space, and then apply OSLB or CKL-UCB, algorithms that provably
exploit the structure efficiently. This approach is shown, through numerical
experiments, to significantly outperform existing algorithms that directly deal
with the continuous set of arms. Finally the results and algorithms are
extended to contextual bandits with similarities.Comment: COLT 201
- …