We consider stochastic multi-armed bandit problems where the expected reward
is a Lipschitz function of the arm, and where the set of arms is either
discrete or continuous. For discrete Lipschitz bandits, we derive asymptotic
problem specific lower bounds for the regret satisfied by any algorithm, and
propose OSLB and CKL-UCB, two algorithms that efficiently exploit the Lipschitz
structure of the problem. In fact, we prove that OSLB is asymptotically
optimal, as its asymptotic regret matches the lower bound. The regret analysis
of our algorithms relies on a new concentration inequality for weighted sums of
KL divergences between the empirical distributions of rewards and their true
distributions. For continuous Lipschitz bandits, we propose to first discretize
the action space, and then apply OSLB or CKL-UCB, algorithms that provably
exploit the structure efficiently. This approach is shown, through numerical
experiments, to significantly outperform existing algorithms that directly deal
with the continuous set of arms. Finally the results and algorithms are
extended to contextual bandits with similarities.Comment: COLT 201