5 research outputs found
A general kinetic model for the photothermal oxidation of polypropylene
A general kinetic model for the photothermal oxidation of polypropylene has been derived from the basic auto-oxidation mechanistic scheme in which the main sources of radicals are the thermolysis and photolysis of the most unstable species, i.e hydroperoxides. Thermolysis is a uni- or bi-molecular reaction whose rate constant obeys an Arrhenius law. In contrast, photolysis is exclusively a unimolecular reaction and its rate constant is independent of temperature. According to the quantum theory, this latter is proportional to the energy absorbed by photosensitive species and thus, accounts for the impact of UV-light intensity and wavelength on the global oxidation kinetics. The validity of this model has been checked on iPP films homogeneously oxidized in air over a wide range of temperatures and UV-light sources. It gives access to the concentration changes of: (i) primary (hydroperoxides) and secondary (carbonyls) oxidation products, (ii) double bonds, (iii) chain scissions and crosslinking nodes, but also to the subsequent changes in molecular masses. These calculations are in full agreement with the photolysis results reported by Carlsson and Wiles in the 70s [1–3]. However, the model seems to be only valid for UV-light energies equivalent to about 10 suns as upper boundary, presumably because of multiphotonic excitations or chromophores photosensitization (i.e. termolecular photo-physical reactions), both enhanced at high irradiances
A general kinetic model for the photothermal oxidation of polypropylene
A general kinetic model for the photothermal oxidation of polypropylene has been derived from the basic auto-oxidation mechanistic scheme in which the main sources of radicals are the thermolysis and photolysis of the most unstable species, i.e hydroperoxides. Thermolysis is a uni- or bi-molecular reaction whose rate constant obeys an Arrhenius law. In contrast, photolysis is exclusively a unimolecular reaction and its rate constant is independent of temperature. According to the quantum theory, this latter is proportional to the energy absorbed by photosensitive species and thus, accounts for the impact of UV-light intensity and wavelength on the global oxidation kinetics.The validity of this model has been checked on iPP films homogeneously oxidized in air over a wide range of temperatures and UV-light sources. It gives access to the concentration changes of: (i) primary (hydroperoxides) and secondary (carbonyls) oxidation products, (ii) double bonds, (iii) chain scissions and crosslinking nodes, but also to the subsequent changes in molecular masses. These calculations are in full agreement with the photolysis results reported by Carlsson and Wiles in the 70s [1–3]. However, the model seems to be only valid for UV-light energies equivalent to about 10 suns as upper boundary, presumably because of multiphotonic excitations or chromophores photosensitization (i.e. termolecular photo-physical reactions), both enhanced at high irradiances.International audienceA general kinetic model for the photothermal oxidation of polypropylene has been derived from the basic auto-oxidation mechanistic scheme in which the main sources of radicals are the thermolysis and photolysis of the most unstable species, i.e hydroperoxides. Thermolysis is a uni- or bi-molecular reaction whose rate constant obeys an Arrhenius law. In contrast, photolysis is exclusively a unimolecular reaction and its rate constant is independent of temperature. According to the quantum theory, this latter is proportional to the energy absorbed by photosensitive species and thus, accounts for the impact of UV-light intensity and wavelength on the global oxidation kinetics.The validity of this model has been checked on iPP films homogeneously oxidized in air over a wide range of temperatures and UV-light sources. It gives access to the concentration changes of: (i) primary (hydroperoxides) and secondary (carbonyls) oxidation products, (ii) double bonds, (iii) chain scissions and crosslinking nodes, but also to the subsequent changes in molecular masses. These calculations are in full agreement with the photolysis results reported by Carlsson and Wiles in the 70s [1–3]. However, the model seems to be only valid for UV-light energies equivalent to about 10 suns as upper boundary, presumably because of multiphotonic excitations or chromophores photosensitization (i.e. termolecular photo-physical reactions), both enhanced at high irradiances
Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations
We analyzed genome-wide association data from 1,380 Europeans with early-onset and morbid adult obesity and 1,416 age-matched normal-weight controls. Thirty-eight markers showing strong association were further evaluated in 14,186 European subjects. In addition to FTO and MC4R, we detected significant association of obesity with three new risk loci in NPC1 (endosomal/lysosomal Niemann-Pick C1 gene, P = 2.9 × 10-7), near MAF (encoding the transcription factor c-MAF, P = 3.8 × 10 -13) and near PTER (phosphotriesterase-related gene, P = 2.1 × 10-7)
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background: Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods: We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5-19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For school-aged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings: From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation: The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity. Funding: UK Medical Research Council, UK Research and Innovation (Research England), UK Research and Innovation (Innovate UK), and European Union