201 research outputs found

    Evolution of Neuro-Controllers for Robots\u27 Alignment using Local Communication

    Get PDF
    In this paper, we use artificial evolution to design homogeneous neural network controller for groups of robots required to align. Aligning refers to the process by which the robots managed to head towards a common arbitrary and autonomously chosen direction starting from initial randomly chosen orientations. The cooperative interactions among robots require local communications that are physically implemented using infrared signalling. We study the performance of the evolved controllers, both in simulation and in reality for different group sizes. In addition, we analyze the most successful communication strategy developed using artificial evolution

    Self-Organized Discrimination of Resources

    Get PDF
    When selecting a resource to exploit, an insect colony must take into account at least two constraints: the resource must be abundant enough to sustain the whole group, but not too large to limit exploitation costs, and risks of conflicts with other colonies. Following recent results on cockroaches and ants, we introduce here a behavioral mechanism that satisfies these two constraints. Individuals simply modulate their probability to switch to another resource as a function of the local density of conspecifics locally detected. As a result, the individuals gather at the smallest resource that can host the whole group, hence reducing competition and exploitation costs while fulfilling the overall group's needs. Our analysis reveals that the group becomes better at discriminating between similar resources as it grows in size. Also, the discrimination mechanism is flexible and the group readily switches to a better suited resource as it appears in the environment. The collective decision emerges through the self-organization of individuals, that is, in absence of any centralized control. It also requires a minimal individual cognitive investment, making the proposed mechanism likely to occur in other social species and suitable for the development of distributed decision making tools

    Social Odometry: Imitation Based Odometry in Collective Robotics

    Full text link
    The improvement of odometry systems in collective robotics remains an important challenge for several applications. Social odometry is an online social dynamics which confers the robots the possibility to learn from the others. Robots neither share any movement constraint nor access to centralized information. Each robot has an estimate of its own location and an associated confidence level that decreases with distance traveled. Social odometry guides a robot to its goal by imitating estimated locations, confidence levels and actual locations of its neighbors. This simple online social form of odometry is shown to produce a self-organized collective pattern which allows a group of robots to both increase the quality of individuals’ estimates and efficiently improve their collective performanc

    Artificial Pheromone for Path Selection by a Foraging Swarm of Robots

    Get PDF
    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilitie

    Negotiation of goal direction for cooperative transport

    Get PDF
    In this paper, we study the cooperative transport of a heavy object by a group of robots towards a goal. We investigate the case in which robots have partial and noisy knowledge of the goal direction and can not perceive the goal itself. The robots have to coordinate their motion to apply enough force on the object to move it. Furthermore, the robots should share knowledge in order to collectively improve their estimate of the goal direction and transport the object as fast and as accurately as possible towards the goal. We propose a bio-inspired mechanism of negotiation of direction that is fully distributed. Four different strategies are implemented and their performances are compared on a group of four real robots, varying the goal direction and the level of noise. We identify a strategy that enables effcient coordination of motion of the robots. Moreover, this strategy lets the robots improve their knowledge of the goal direction. Despite significant noise in the robots' communication, we achieve effective cooperative transport towards the goal and observe that the negotiation of direction entails interesting properties of robustness

    Social odometry in populations of autonomous robots

    Get PDF
    Abstract. The improvement of odometry systems in collective robotics remains an important challenge for several applications. In this work, we propose a localisation strategy in which robots have no access to centralised information. Each robot has an estimate of its own location and an associated confidence level that decreases with distance travelled. Robots use estimates advertised by neighbouring robots to correct their own location estimates at each time-step. This simple online social form of odometry is shown to allow a group of robots to both increase the quality of individuals' estimates and efficiently improve their collective performance. Furthermore, social odometry produces a successful selforganised collective pattern

    Clinical factors influencing long-term survival in a real-life cohort of early stage non-small-cell lung cancer patients in Spain

    Get PDF
    Funding Information: This work was supported in part by Centro de Matematica e Aplicaçoes, UID (MAT/00297/2020), Portuguese Foundation of Science and Technology. Acknowledgments Publisher Copyright: Copyright © 2023 Torrente, Sousa, Guerreiro, Franco, Hernández, Parejo, Sousa, Campo-Cañaveral, Pimentão and Provencio.Background: Current prognosis in oncology is reduced to the tumour stage and performance status, leaving out many other factors that may impact the patient´s management. Prognostic stratification of early stage non-small-cell lung cancer (NSCLC) patients with poor prognosis after surgery is of considerable clinical relevance. The objective of this study was to identify clinical factors associated with long-term overall survival in a real-life cohort of patients with stage I-II NSCLC and develop a prognostic model that identifies features associated with poor prognosis and stratifies patients by risk. Methods: This is a cohort study including 505 patients, diagnosed with stage I-II NSCLC, who underwent curative surgical procedures at a tertiary hospital in Madrid, Spain. Results: Median OS (in months) was 63.7 (95% CI, 58.7-68.7) for the whole cohort, 62.4 in patients submitted to surgery and 65 in patients submitted to surgery and adjuvant treatment. The univariate analysis estimated that a female diagnosed with NSCLC has a 0.967 (95% CI 0.936 - 0.999) probability of survival one year after diagnosis and a 0.784 (95% CI 0.712 - 0.863) five years after diagnosis. For males, these probabilities drop to 0.904 (95% CI 0.875 - 0.934) and 0.613 (95% CI 0.566 - 0.665), respectively. Multivariable analysis shows that sex, age at diagnosis, type of treatment, ECOG-PS, and stage are statistically significant variables (p1) while adjuvant chemotherapy is a good prognostic variable (HR<1). The prognostic model identified a high-risk profile defined by males over 71 years old, former smokers, treated with surgery, ECOG-PS 2. Conclusions: The results of the present study found that, overall, adjuvant chemotherapy was associated with the best long-term OS in patients with resected NSCLC. Age, stage and ECOG-PS were also significant factors to take into account when making decisions regarding adjuvant therapy.publishersversionpublishe

    Improving Social Odometry Robot Networks with Distributed Reputation Systems for Collaborative Purposes

    Get PDF
    The improvement of odometry systems in collaborative robotics remains an important challenge for several applications. Social odometry is a social technique which confers the robots the possibility to learn from the others. This paper analyzes social odometry and proposes and follows a methodology to improve its behavior based on cooperative reputation systems. We also provide a reference implementation that allows us to compare the performance of the proposed solution in highly dynamic environments with the performance of standard social odometry techniques. Simulation results quantitatively show the benefits of this collaborative approach that allows us to achieve better performances than social odometry

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure
    corecore