372 research outputs found

    Dye Tracer Visualization of Infiltration Patterns in Soils on Relict Charcoal Hearths

    Get PDF
    Anthropogenically modified soils are often characterized by a high heterogeneity of substrates and show unique patterns of water infiltration. Such effects are not limited to intensively used or disturbed agricultural and technogenic soils, but can also occur as legacies of former land use in forested areas. The remains of historic charcoal hearths represent a widespread legacy of historic land use. Soils at relict charcoal hearths (RCHs) are most prominently altered by the deposition of a layer of charcoal-rich substrate on top of the natural soil surface. The presence of such a technogenic layer can considerably influence infiltration and soil wetness patterns on the sites. This study describes the spatial patterns of infiltration and soil wetness at charcoal hearth sites compared with undisturbed sandy forest soils for a historic charcoal production area north of Cottbus, Germany. We characterized six plots on RCH and reference soils under pine, oak, and mixed forest by visualizing preferential flow patterns of infiltrating water in dye tracer experiments. Additionally, we characterized bulk density, soil organic matter (SOM) contents and water repellency, using water drop penetration time (wdpt) tests, of the RCH and reference soil horizons. The results reflect that the persistence of water repellency of both the technogenic substrates and the natural topsoils is extremely high under dry conditions, but is drastically reduced after wet antecedent conditions. The dye tracer experiments reflect increased preferential flow on the RCHs for dry soil conditions, for which infiltration is limited to very few flow paths in the technogenic substrate layer. Differences between RCH and reference soils are less clear for higher antecedent soil wetness, for which the results indicate more uniform wetting of the technogenic substrates. We conclude that the structural properties of the additional technogenic substrate layer of RCHs have characteristic effects on water infiltration, causing a high temporal variation of preferential flow in relation to antecedent soil moisture conditions. These effects can result in high heterogeneity of soil moisture for dry conditions, and generally in a high temporal variation of soil wetness in RCHs soils

    Formation, Classification, and Properties of Soils at Two Relict Charcoal Hearth Sites in Brandenburg, Germany

    Get PDF
    Historical charcoal production can have significant effects on soil properties. We studied soils at former charcoal production sites (relict charcoal hearths, RCHs) and compared these soils with undisturbed soil next to the charcoal hearths and four typical soils on similar parent material located at distances between 10 and 70 km from the RCHs. In a landscape typical of the northern German lowland, we found Podsolige Braunerde [WRB: Brunic Arenosols (Protospodic)] outside of the RCHs and soils with a clearly different stratigraphy within the RCHs. The main feature of the soils at both of the studied RCHs is a heterogeneous, charcoal-bearing deposit that is ~30 cm thick. No indications of translocation or mineral transformation processes, which form distinct soil horizons after the deposition of anthropogenic material on the RCHs, are present. Except for the differences in color and total carbon content, the soil chemistry of the RCHs hardly differs from that of the soil outside of the charcoal hearth sites. The soil colors and magnetic susceptibility values strongly suggest that the RCH substrates and the underlying topsoil were affected by thermally induced transformation of iron (hydr-)oxides. Although the charring procedure normally requires ~2 weeks, the heating effect only reaches to a maximum depth of 8 cm into the buried soil below the charcoal hearths. The presence of reddish soil and an abrupt increase in magnetic susceptibility in the upper 2 cm of the soil below the charcoal hearths indicate the heat-induced transformation of iron (hydr-)oxides into maghemite. Brighter soil color and an increase in soil organic matter (SOM) in the lower parts of the buried topsoil demonstrate the combustion of SOM up to 5 cm depth below the RCH. According to the German Guidelines for Soil Mapping, the soils in the RCHs are classified as Regosols above Braunerde [WRB: Spolic Technosols (Arenic)]. However, because the anthropogenic features of these soil sediments are disregarded in the German Guidelines for Soil Mapping, we suggest adapting the “M” horizon to permit a jM horizon. Thus, the soils in the RCHs could be classified as Kolluviale Braunerde

    Multi trace element profiling in pathogenic and non-pathogenic fungi

    Get PDF
    Acknowledgements SW and EM were funded by an MRC NIRG to AB (G0900211/90671). AP was funded by a British Mycological Society Summer Studentship. AB was funded by a Royal Society URF (UF080611) and a Senior Wellcome Research Fellowship (206412/A/17/Z), which also funded TB. DW was funded by a Senior Wellcome Research Fellowship (214317/A/18/Z). The work was carried out in the MRC Centre for Medical Mycology (MR/N006364/2). This article is part of the Fungal Adaptation to Hostile Challenges special issue for the third International Symposium on Fungal Stress (ISFUS), which is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo grant 2018/20571-6 and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grant 88881.289327/2018-01.Peer reviewedproofPublisher PD

    Selection and phenotypic characterization of a core collection of <i>Brachypodium distachyon</i> inbred lines

    Get PDF
    BACKGROUND: The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. RESULTS: We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. CONCLUSION: These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation

    Epstein–Barr Virus MicroRNAs Are Evolutionarily Conserved and Differentially Expressed

    Get PDF
    The pathogenic lymphocryptovirus Epstein–Barr virus (EBV) is shown to express at least 17 distinct microRNAs (miRNAs) in latently infected cells. These are arranged in two clusters: 14 miRNAs are located in the introns of the viral BART gene while three are located adjacent to BHRF1. The BART miRNAs are expressed at high levels in latently infected epithelial cells and at lower, albeit detectable, levels in B cells. In contrast to the tissue-specific expression pattern of the BART miRNAs, the BHRF1 miRNAs are found at high levels in B cells undergoing stage III latency but are essentially undetectable in B cells or epithelial cells undergoing stage I or II latency. Induction of lytic EBV replication was found to enhance the expression of many, but not all, of these viral miRNAs. Rhesus lymphocryptovirus, which is separated from EBV by ≄13 million years of evolution, expresses at least 16 distinct miRNAs, seven of which are closely related to EBV miRNAs. Thus, lymphocryptovirus miRNAs are under positive selection and are likely to play important roles in the viral life cycle. Moreover, the differential regulation of EBV miRNA expression implies distinct roles during infection of different human tissues

    Biodiversity post-2020: Closing the gap between global targets and national-level implementation

    Get PDF
    National and local governments need to step up efforts to effectively implement the post-2020 global biodiversity framework of the Convention on Biological Diversity to halt and reverse worsening biodiversity trends. Drawing on recent advances in interdisciplinary biodiversity science, we propose a framework for improved implementation by national and subnational governments. First, the identification of actions and the promotion of ownership across stakeholders need to recognize the multiple values of biodiversity and account for remote responsibility. Second, cross-sectorial implementation and mainstreaming should adopt scalable and multifunctional ecosystem restoration approaches and target positive futures for nature and people. Third, assessment of progress and adaptive management can be informed by novel biodiversity monitoring and modeling approaches handling the multidimensionality of biodiversity change

    Patterns of Plant Biomass Partitioning Depend on Nitrogen Source

    Get PDF
    Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. 15N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants

    Epstein-Barr Virus LMP2A Reduces Hyperactivation Induced by LMP1 to Restore Normal B Cell Phenotype in Transgenic Mice

    Get PDF
    Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. NaĂŻve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors
    • 

    corecore