8 research outputs found

    Characterization and remodeling of the vasculature in human adipose tissue

    Get PDF
    Die Ursache von Adipositas liegt im übermäßigen Wachstum von Fettgewebe, welches hauptsächlich aus Fettzellen, den Adipozyten, besteht. Die Zellen der stroma-vaskulären Fraktion, welche Vorläuferzellen, Makrophagen und Zellen des lokalen Gefäßnetzwerks enthält, sind außerdem an der Homöostase des Fettgewebes beteiligt. Insbesondere spielt das Gefäßsystem des Fettgewebes in Nagetieren eine wichtige Rolle im Fettgewebewachstum, da die Hemmung der Angiogenese in genetisch- und diät-induzierten fettleibigen Mäusen die Entstehung von Adipositas verhindert. Dennoch wurde das Gefäßsystem des menschlichen Fettgewebes bis heute nicht erforscht. Durch immuno-histochemische Analysen am subkutanen menschlichen Fettgewebe konnten wir zwei verschiedene Gefäßsysteme identifizieren: das vaskuläre Netzwerk des Bluts und das lymphatische vaskuläre Netzwerk. Während die Endothelzellen von beiden Gefäßsystemen die gemeinsamen Endothelzellmarker von Willebrand factor (vWf) und CD31 (PECAM, Platelet Endothelial Cell Adhesion Molecule) exprimierten, konnten die Endothelzellen der Blutgefäße an der Expression des Markers CD34 (Stamm/Blutgefäß-Endothel-Zell-Marker) und die Endothelzellen der Lymphgefäße an der Expression der beiden lymphatischen Marker Podoplanin und VEGFR3 (Vascular Endothelial Growth Factor Receptor 3) spezifisch erkannt werden. Ausschließlich für den Marker CD34-positive Zellen und in Rosetten angeordnete CD31-positive Zellen, welche als residente Makrophagen wurden auch charakterisiert. Um die beiden Gefäßsystemen des menschlichen Fettgewebes weiterhin zu erforschen, haben wir ein auf Immunoselektion basiertes Protokoll entwickelt. Es ermöglicht, Blut- (BEC) und lymphatische (LEC) Endothelzellen aber auch Makrophagen und CD34-positive Zellen spezifisch zu isolieren. Sowohl BEC als auch LEC exprimierten VEGFR1, VEGFR2, vWf und Notch4 und nehmen acetyliertes LDL auf. Darüber hinaus konnte in LEC die Expression von Genen, welche spezifisch für das Lymphgefäßsystem sind, wie Podoplanin, Reelin, VEGFR3, Desmoplakin, LYVE-1 nachgewiesen werden. Durch fluss-cytometrischen Analysen des Anzahls von BEC und LEC im Fettgewebe von Patienten mit unterschiedlichen Body Mass Indices (BMI) wurde entdeckt, dass Fettleibigkeit von einer Erweiterung des vaskulären Netzwerks des Bluts im Fettgewebe begleitet wird, jedoch nicht von einer Erweiterung des lymphatischen vaskulären Systems. Flusscytometrische Analysen belegen, dass es in der CD34-positive Stroma-Zellpopulation Zellen gibt, die den endothelialen Progenitor-Zellmarker CD133 und den primitiven Stammzellmarker ABCG2 exprimieren. Außerdem zeigten die CD34-positive Zellen eine signifikant stärkere Proliferation und Expression von Endothelzellmarkern wie CD31 und vWf, wenn dem Kulturmedium zuvor die Faktoren Vascular Endothelial Growth Factor A (VEGF A) und Insulin-Like Growth Factor-1 zugefügt worden waren. Wurden Mäusen mit Hinterbeinischämie CD34-positive Zellen in vivo injiziert, beteiligten sich diese Zellen an der Neovaskularisation des ischämischen Hinterbeins. Eine signifikante Zunahme des Blutflusses im ischämischen Bein, gekoppelt an einer erhöhten Kapillardichte im ischämischen Muskel und einer Integration der menschlichen Zellen in die Vaskulatur der Maus waren erkennbar. Diese Ergebnisse weisen darauf hin, dass es unter den CD34-positive Zellen eine Population von endothelialen Progenitorzellen gibt, die -bei geeigneter Stimulation- zu Endothelzellen differenzieren. Parallel dazu wurden die lokalen Faktoren untersucht, die potentiell an der Wachstumskontrolle, der Migration und der Organisation der ruhenden, aus dem Fettgewebe stammenden, BEC und LEC beteiligt waren. Sekrete der Adipozyten, jedoch nicht der CD34-positive Zellen, induzierten eine signifikante BEC- und LEC-Proliferation. Außerdem induzierte die Kombination von Leptin und VEGF A oder des basic Fibroblast Growth Factor eine signifikante Zunahme der BrdU-Inkorporation in BEC während Adiponectin, VEGF C und VEGF D bereits alleine konzentrationsabhängig die Proliferation von LEC induzierten. Leptin, und nicht Adiponectin, führte zu signifikant höherer BEC-Migration und Röhrenformung, während Adiponectin, und nicht Leptin, die LEC-Migration und -Organisation förderte. Dabei führte Leptin in BEC und Adiponectin in LEC zeitabhängig zu einer signifikanten Zunahme der Phosphorylierung der Kinase Akt. Diese Ergebnisse belegen, dass die beiden aus Adipozyten stammenden Adipokine Leptin und Adiponectin eine tragende Rolle in der Umverteilung von BEC bzw. LEC spielen. Im Rahmen der Adipositas steigt die Plasmakonzentration von Leptin an während die Plasmakonzentration von Adiponectin sinkt. Unsere Ergebnisse deuten daraufhin, dass Leptin als lokaler pro-angiogenetischer Faktor identifizieren und Adiponectin als neuer lymphangiogenetischer Faktor im menschlichen Fettgewebe beschreiben konnte. Demnach könnten Veränderungen, in der Adipositas, der Adipokinfreisetzung durch Adipozyten am Umbau des vaskulären Netzwerks des Bluts und am ausbleibenden Wachstum des lymphatischen vaskulären Systems innerhalb des Fettgewebes beteiligt sein. Schließlich belegen die vorliegenden Ergebnisse das Vorhandensein einer Progenitor-Zell-Population in der Stroma-Fraktion des menschlichen Fettgewebes. Diese Progenitor-Zellen sind in der Lage sich an der Neovaskularisation ischämischen Gewebes zu beteiligen. Diese Population könnte im Hinblick auf zelltherapeutische Strategien eine interessante Alternative zu Stammzellen aus dem Knochenmark darstellen

    Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes.: Human adipogenesis regulation by macrophages

    No full text
    Obesity is considered a chronic low-grade inflammatory state. The white adipose tissue produces a variety of inflammation-related proteins whose expression is increased in obese subjects. The nonadipose cell fraction, which includes infiltrated macrophages, is a determinant source of inflammation-related molecules within the adipose tissue. Our working hypothesis is that macrophage infiltration affects fat expansion through a paracrine action on adipocyte differentiation. Human primary preadipocytes were then differentiated in the presence of conditioned media obtained from macrophages differentiated from blood monocytes. Preadipocytes treated by macrophage-conditioned medium displayed marked reduction of adipogenesis as assessed by decreased cellular lipid accumulation and reduced gene expression of adipogenic and lipogenic markers. In addition to this effect, the activation of macrophages by lipopolysaccharides stimulated nuclear factor kappaB signaling, increased gene expression and release of proinflammatory cytokines and chemokines, and induced preadipocyte proliferation. This phenomenon was associated with increased cyclin D1 gene expression and maintenance of the fibronectin-rich matrix. Anti-TNFalpha neutralizing antibody inhibits the inflammatory state of preadipocytes positioning TNFalpha as an important mediator of inflammation in preadipocytes. Strikingly, conditioned media produced by macrophages isolated from human adipose tissue exerted comparable effects with activated macrophages, i.e. decreased adipogenesis and increased inflammatory state in the preadipocytes. These data show that macrophage-secreted factors inhibit the formation of mature adipocytes, suggesting possible role in limiting adipose tissue expansion in humans

    The role of endothelial cells in inflamed adipose tissue.

    No full text
    International audienceIn recent years, the general concept has emerged that chronic low-grade inflammation can be the condition linking excessive development of adipose tissue (AT) and obesity-associated pathologies such as type II diabetes and atherosclerosis. Moreover, the evidence that the growth of the fat mass was associated with an accumulation of adipose tissue macrophages (ATM) has raised the hypothesis that the development of an inflammatory process within the growing fat mass is a primary event involved in the genesis of systemic metabolic and vascular alterations. As ATM originate from the bone marrow/blood compartment, enhanced macrophage recruitment to growing AT is suspected. However, the mechanisms responsible for attracting the blood cells and their entry into the fat mass remain to be clearly defined. The present review highlights the key role of endothelial cells in the control of the inflammatory process and describes the potential involvement of AT-endothelial cells as well as the factors involved in the regulation of their phenotype in the 'inflamed fat tissue'

    Chemotaxis and differentiation of human adipose tissue CD34+/CD31- progenitor cells: role of stromal derived factor-1 released by adipose tissue capillary endothelial cells.

    No full text
    International audienceThe native CD34+/CD31- cell population present in the stroma-vascular fraction of human adipose tissue (hAT) displays progenitor cell properties since they exhibit adipocyte- and endothelial cell-like phenotypes under appropriate stimuli. To analyze the signals within hAT regulating their phenotypes, the influence of hAT-derived capillary endothelial cells (CECs) was studied on the chemotaxis and differentiation of the hAT-CD34+/CD31- cells. Conditioned medium from hAT-CECs led to a strong chemotaxis of the hAT-CD34+/CD31- cells that was inhibited with pretreatments with pertussis toxin, CXCR-4 antagonist, or neutralizing antibodies. Furthermore, hAT-CECs produced and secreted the CXCR-4 ligand, that is, the stromal derived factor-1 (SDF-1). Finally, hAT-CECs induced the differentiation of hAT-CD34+/CD31- cells toward an endothelial cell (EC) phenotype. Indeed, hAT-CECs and -CD34+/CD31- cell coculture stimulated in a two-dimensional system the expression of the EC CD31 marker by the hAT-progenitor cells and, in a three-dimensional approach, the formation of capillary-like structures via a SDF-1/CXCR-4 dependent pathway. Thus, the migration and differentiation of hAT progenitor cells are modulated by hAT-CEC-derived factors. SDF-1, which is secreted by hAT-derived CECs, and its receptor CXCR-4, expressed by hAT-derived progenitor cells, may promote chemotaxis and differentiation of hAT-derived progenitor cells and thus contribute to the formation of the vascular network during the development of hAT

    Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy

    No full text
    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8 days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs.R.P. Pirraco contract financed by SFRH/BPD/101886/2014. B.S. Marques contract financed by SFRH/BPD/90533/2012. M.T. Cerqueira contract financed by SFRH/BPD/96611/2013. T.C. Santos contract financed by SFRH/BPD/101952/2014. Financial support by RL3-TECT-NORTE-01-0124-FEDER-000020 and the European Research Council Advanced Grant (ERC-2012-AdG_20120216- 321266) for the project ComplexiTE is also acknowledged.info:eu-repo/semantics/publishedVersio
    corecore