118 research outputs found

    Variation in Spatial Predictions Among Species Distribution Modeling Methods

    Get PDF
    <p>Prediction maps produced by species distribution models (SDMs) influence decision-making in resource management or designation of land in conservation planning. Many studies have compared the prediction accuracy of different SDM modeling methods, but few have quantified the similarity among prediction maps. There has also been little systematic exploration of how the relative importance of different predictor variables varies among model types. Our objective was to expand the evaluation of SDM performance for 45 plant species in southern California to better understand how map predictions vary among model types, and to explain what factors may affect spatial correspondence, including the selection and relative importance of different environmental variables. Four types of models were tested. Correlation among maps was highest between generalized linear models (GLMs) and generalized additive models (GAMs) and lowest between classification trees and GAMs or GLMs. Correlation between Random Forests (RFs) and GAMs was the same as between RFs and classification trees. Spatial correspondence among maps was influenced the most by model prediction accuracy (AUC) and species prevalence; map correspondence was highest when accuracy was high and prevalence was intermediate. Species functional type and the selection of climate variables also influenced map correspondence. For most (but not all) species, climate variables were more important than terrain or soil in predicting their distributions. Environmental variable selection varied according to modeling method, but the largest differences were between RFs and GLMs or GAMs. Although prediction accuracy was equal for GLMs, GAMs, and RFs, the differences in spatial predictions suggest that it may be important to evaluate the results of more than one model to estimate a range of spatial uncertainty before making planning decisions based on map outputs. This may be particularly important if models have low accuracy or if species prevalence is not intermediate.</p>

    Wildfire ignition-distribution modelling: a comparative study in the Huron-Manistee National Forest, Michigan, USA

    Get PDF
    Abstract. Wildfire ignition distribution models are powerful tools for predicting the probability of ignitions across broad areas, and identifying their drivers. Several approaches have been used for ignition-distribution modelling, yet the performance of different model types has not been compared. This is unfortunate, given that conceptually similar speciesdistribution models exhibit pronounced differences among model types. Therefore, our goal was to compare the predictive performance, variable importance and the spatial patterns of predicted ignition-probabilities of three ignition-distribution model types: one parametric, statistical model (Generalised Linear Models, GLM) and two machine-learning algorithms (Random Forests and Maximum Entropy, Maxent). We parameterised the models using 16 years of ignitions data and environmental data for the Huron-Manistee National Forest in Michigan, USA. Random Forests and Maxent had slightly better prediction accuracies than did GLM, but model fit was similar for all three. Variables related to human population and development were the best predictors of wildfire ignition locations in all models (although variable rankings differed slightly), along with elevation. However, despite similar model performance and variables, the map of ignition probabilities generated by Maxent was markedly different from those of the two other models. We thus suggest that when accurate predictions are desired, the outcomes of different model types should be compared, or alternatively combined, to produce ensemble predictions

    The roles of dispersal, fecundity, and predation in the population persistence of an oak (Quercus engelmannii) under global change

    Get PDF
    Abstract A species&apos; response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species&apos; ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species -Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors -climate change, land use change, and altered fire frequencyemphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations

    Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire

    Get PDF
    Surging wildfires across the globe are contributing to escalating residential losses and have major social, economic, and ecological consequences. The highest losses in the U.S. occur in southern California, where nearly 1000 homes per year have been destroyed by wildfires since 2000. Wildfire risk reduction efforts focus primarily on fuel reduction and, to a lesser degree, on house characteristics and homeowner responsibility. However, the extent to which land use planning could alleviate wildfire risk has been largely missing from the debate despite large numbers of homes being placed in the most hazardous parts of the landscape. Our goal was to examine how housing location and arrangement affects the likelihood that a home will be lost when a wildfire occurs. We developed an extensive geographic dataset of structure locations, including more than 5500 structures that were destroyed or damaged by wildfire since 2001, and identified the main contributors to property loss in two extensive, fire-prone regions in southern California. The arrangement and location of structures strongly affected their susceptibility to wildfire, with property loss most likely at low to intermediate structure densities and in areas with a history of frequent fire. Rates of structure loss were higher when structures were surrounded by wildland vegetation, but were generally higher in herbaceous fuel types than in higher fuel-volume woody types. Empirically based maps developed using housing pattern and location performed better in distinguishing hazardous from non-hazardous areas than maps based on fuel distribution. The strong importance of housing arrangement and location indicate that land use planning may be a critical tool for reducing fire risk, but it will require reliable delineations of the most hazardous locations

    Fire and biodiversity in the Anthropocene

    Get PDF
    The workshop leading to this paper was funded by the Centre Tecnològic Forestal de Catalunya and the ARC Centre of Excellence for Environmental Decisions. L.T.K. was supported by a Victorian Postdoctoral Research Fellowship (Victorian Government), a Centenary Fellowship (University of Melbourne), and an Australian Research Council Linkage Project Grant (LP150100765). A.R. was supported by the Xunta de Galicia (Postdoctoral Fellowship ED481B2016/084-0) and the Foundation for Science and Technology under the FirESmart project (PCIF/MOG/0083/2017). A.L.S. was supported by a Marie Skłodowska-Curie Individual Fellowship (746191) under the European Union Horizon 2020 Programme for Research and Innovation. L.R. was supported by the Australian Government’s National Environmental Science Program through the Threatened Species Recovery Hub. L.B. was partially supported by the Spanish Government through the INMODES (CGL2014-59742-C2-2-R) and the ERANET-SUMFORESTS project FutureBioEcon (PCIN-2017-052). This research was supported in part by the U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.BACKGROUND Fire has shaped the diversity of life on Earth for millions of years. Variation in fire regimes continues to be a source of biodiversity across the globe, and many plants, animals, and ecosystems depend on particular temporal and spatial patterns of fire. Although people have been using fire to modify environments for millennia, the combined effects of human activities are now changing patterns of fire at a global scale—to the detriment of human society, biodiversity, and ecosystems. These changes pose a global challenge for understanding how to sustain biodiversity in a new era of fire. We synthesize how changes in fire activity are threatening species with extinction across the globe, highlight forward-looking methods for predicting the combined effects of human drivers and fire on biodiversity, and foreshadow emerging actions and strategies that could revolutionize how society manages fire for biodiversity in the Anthropocene. ADVANCES Our synthesis shows that interactions with anthropogenic drivers such as global climate change, land use, and biotic invasions are transforming fire activity and its impacts on biodiversity. More than 4400 terrestrial and freshwater species from a wide range of taxa and habitats face threats associated with modified fire regimes. Many species are threatened by an increase in fire frequency or intensity, but exclusion of fire in ecosystems that need it can also be harmful. The prominent role of human activity in shaping global ecosystems is the hallmark of the Anthropocene and sets the context in which models and actions must be developed. Advances in predictive modeling deliver new opportunities to couple fire and biodiversity data and to link them with forecasts of multiple drivers including drought, invasive plants, and urban growth. Making these connections also provides an opportunity for new actions that could revolutionize how society manages fire. Emerging actions include reintroduction of mammals that reduce fuels, green fire breaks comprising low-flammability plants, strategically letting wildfires burn under the right conditions, managed evolution of populations aided by new genomics tools, and deployment of rapid response teams to protect biodiversity assets. Indigenous fire stewardship and reinstatement of cultural burning in a modern context will enhance biodiversity and human well-being in many regions of the world. At the same time, international efforts to reduce greenhouse gas emissions are crucial to reduce the risk of extreme fire events that contribute to declines in biodiversity. OUTLOOK Conservation of Earth’s biological diversity will be achieved only by recognition of and response to the critical role of fire in shaping ecosystems. Global changes in fire regimes will continue to amplify interactions between anthropogenic drivers and create difficult trade-offs between environmental and social objectives. Scientific input will be crucial for navigating major decisions about novel and changing ecosystems. Strategic collection of data on fire, biodiversity, and socioeconomic variables will be essential for developing models to capture the feedbacks, tipping points, and regime shifts characteristic of the Anthropocene. New partnerships are also needed to meet the challenges ahead. At the local and regional scale, getting more of the “right” type of fire in landscapes that need it requires new alliances and networks to build and apply knowledge. At the national and global scale, biodiversity conservation will benefit from greater integration of fire into national biodiversity strategies and action plans and in the implementation of international agreements and initiatives such as the UN Convention on Biological Diversity. Placing the increasingly important role of people at the forefront of efforts to understand and adapt to changes in fire regimes is central to these endeavors.PostprintPeer reviewe

    Comparing the role of fuel breaks across southern California national forests.

    No full text
    a b s t r a c t Fuel treatment of wildland vegetation is the primary approach advocated for mitigating fire risk at the wildland-urban interface (WUI), but little systematic research has been conducted to understand what role fuel treatments play in controlling large fires, which factors influence this role, or how the role of fuel treatments may vary over space and time. We assembled a spatial database of fuel breaks and fires from the last 30 years in four southern California national forests to better understand which factors are consistently important for fuel breaks in the control of large fires. We also explored which landscape features influence where fires and fuel breaks are most likely to intersect. The relative importance of significant factors explaining fuel break outcome and number of fire and fuel break intersections varied among the forests, which reflects high levels of regional landscape diversity. Nevertheless, several factors were consistently important across all the forests. In general, fuel breaks played an important role in controlling large fires only when they facilitated fire management, primarily by providing access for firefighting activities. Fire weather and fuel break maintenance were also consistently important. Models and maps predicting where fuel breaks and fires are most likely to intersect performed well in the regions where the models were developed, but these models did not extend well to other regions, reflecting how the environmental controls of fire regimes vary even within a single ecoregion. Nevertheless, similar mapping methods could be adopted in different landscapes to help with strategic location of fuel breaks. Strategic location of fuel breaks should also account for access points near communities, where fire protection is most important
    • …
    corecore