18 research outputs found

    Kraft Lignin/Tannin as a Potential Accelerator of Antioxidant and Antibacterial Properties in an Active Thermoplastic Polyester-Based Multifunctional Material

    Get PDF
    This research focuses on key priorities in the field of sustainable plastic composites that will lead to a reduction in CO2 pollution and support the EU\u27s goal of becoming carbon neutral by 2050. The main challenge is to develop high-performance polyphenol-reinforced thermoplastic composites, where the use of natural fillers replaces the usual chemical additives with non-toxic ones, not only to improve the final performance but also to increase the desired multifunctionalities (structural, antioxidant, and antibacterial). Therefore, poly (lactic acid) (PLA) composites based on Kraft lignin (KL) and tannin (TANN) were investigated. Two series of PLA composites, PLA-KL and PLA-TANN, which contained natural fillers (0.5%, 1.0%, and 2.5% (w/w)) were prepared by hot melt extrusion. The effects of KL and TANN on the PLA matrices were investigated, especially the surface physicochemical properties, mechanical properties, and antioxidant/antimicrobial activity. The surface physicochemical properties were evaluated by measuring the contact angle (CA), roughness, zeta potential, and nanoindentation. The results of the water contact angle showed that neither KL nor TANN caused a significant change in the wettability, but only a slight increase in the hydrophilicity of the PLA composites. The filler loading, the size of the particles with their available functional groups on the surfaces of the PLA composites, and the interaction between the filler and the PLA polymer depend on the roughness and zeta potential behavior of the PLA-KL and PLA-TANN composites and ultimately improve the surface mechanical properties. The antioxidant properties of the PLA-KL and PLA-TANN composites were determined using the DPPH (2, 2\u27-diphenyl-1-picrylhydrazyl) test. The results show an efficient antioxidant behavior of all PLA-KL and PLA-TANN composites, which increases with the filler content. Finally, the KL- and PLA-based TANN have shown resistance to the Gram-negative bacteria, E. coli, but without a correlation trend between polyphenol filler content and structure

    Needleless electrospinning of PA6 fibers: The effect of solution concentration and electrospinning voltage on fiber diameter

    Get PDF
    Needleless electrospinning is the process of forming thin material fibers from the open surface of its solution or melt in a strong electrostatic field. Electrospun non-woven materials are used in various applications that require specific fiber diameters and pore size distributions. Fiber diameter depends on the properties of the polymer solution and manufacturing conditions. A needleless electrospinning process using the Nanospider setup was investigated using the commonly used polyamide 6 (PA6) solution in a mixture of acetic and formic acids. Polymer solutions with different polymer concentrations were characterized by viscosity, surface tension and electrical conductivity. An increase in polymer content in the solution resulted in the exponential increase of the solution viscosity, polynomial increase of electrical conductivity and had almost no effect on surface tension. The effect of the polymer concentration in the solution, as well as electrospinning voltage on fiber diameter and diameter distribution, was investigated using scanning electron microscopy images. The average fiber diameter linearly increases with the increased polymer concentration and also demonstrates an increase with increased electrospinning voltage, although less pronounced. Therefore, a change in the PA6 solution concentration should be used for the robust adjustment of fiber diameter, while changes in electrospinning voltage are more appropriate for fine tuning the fiber diameter during the process of needleless electrospinning. © 2020 Journal of Mechanical Engineering.Slovenian Research AgencySlovenian Research Agency - Slovenia [L2-7550, P2-0264]; Fresenius Kabi Deutschland Gmb

    Polysaccharide-based antibacterial coating technologies

    Get PDF
    To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. Statement of significance: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications

    An Intriguing Array of Extrudate Patterns in Long‐Chain Branched Polymers During Extrusion

    Get PDF
    The present study highlights a range of surface and volume extrudate patterns that can be detected during the extrusion flow of long-chain branched polymers. Thus, four linear low-density polyethylenes (LDPEs) have been extruded using a single-screw extruder coupled to an inline optical imaging system. The selected LDPEs are selected to outline the influence of molecular weight and long-chain branching on the types of melt flow extrusion instabilities (MFEI). Through the inline imaging system, space–time diagrams are constructed and analyzed via Fourier-transformation using a custom moving window procedure. Based on the number of characteristic frequencies, peak broadness, and whether they are surface or volume distortions, three main MFEI types, distinct from those typically observed in linear and short-chain branched polymers, are identified. The higher molecular weight, low long-chain branching LDPEs exhibited all three instability types, including a special type volume instability. Independently of the molecular weight, higher long-chain branching appeared to have a stabilizing effect on the transition sequences by suppressing volume extrudate distortions or limiting surface patters to a form of weak intensity type

    Neural networks for predicting the temperature-dependent viscoelastic response of PEEK under constant stress rate loading

    Full text link
    High-performance polymer composites are used in demanding applications in civil and aerospace engineering. Often, structures made from such composites are monitored using structural health monitoring systems. This investigation aims to use a multilayer perceptron neural network to model polymer response to a non-standard excitation under different temperature conditions. Model could be implemented into health monitoring systems. Specifically, the neural network was used to model PEEK material\u27s creep behavior under constant shear stress rate excitation at different temperatures. Optimal neural network topology, the effect of the amount of training data and its distribution in a temperature range on prediction quality were investigated. The results showed that based on the proposed optimization criterion, a properly trained neural network can predict polymeric material behavior within the experimental error. The neural network also enabled good prediction at temperatures where stress-strain behavior was not experimentally determined

    Determination of relaxation modulus of time-dependent materials using neural networks

    Full text link
    Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy dataperformance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods

    Brezigelno elektropredenje vlaken PA6: vpliv koncentracije raztopine in električne napetosti na premer vlaken

    Full text link
    Needleless electrospinning is the process of forming thin material fibers from the open surface of its solution or melt in a strong electrostatic field. Electrospun non-woven materials are used in various applications that require specific fiber diameters and pore size distributions. Fiber diameter depends on the properties of the polymer solution and manufacturing conditions. A needleless electrospinning process using the Nanospider setup was investigated using the commonly used polyamide 6 (PA6) solution in a mixture of acetic and formic acids. Polymer solutions with different polymer concentrations were characterized by viscosity, surface tension and electrical conductivity. An increase in polymer content in the solution resulted in the exponential increase of the solution viscosity, polynomial increase of electrical conductivity and had almost no effect on surface tension. The effect of the polymer concentration in the solution, as well as electrospinning voltage on fiber diameter and diameter distribution, was investigated using scanning electron microscopy images. The average fiber diameter linearly increases with the increased polymer concentration and also demonstrates an increase with increased electrospinning voltage, although less pronounced. Therefore, a change in the PA6 solution concentration should be used for the robust adjustment of fiber diameter, while changes in electrospinning voltage are more appropriate for fine tuning the fiber diameter during the process of needleless electrospinning

    The Influence of HDPE recycling on rheological properties and processing conditions

    Full text link
    According to the latest analysis of European plastics production performed by Plastics Europe, High Density Polythylene (HDPE) together with Medium Density Polythylene were on the third place among the most demanded plastics in Europe in 2016. Mostly used for manufacturing of packaging HDPE gained its demand due to superior mechanical properties, resistance to external impacts and ease of processing

    Mechanical properties and drug permeability of the PA6 membranes prepared by immersion precipitation from PA6 - formic acid - water system

    Full text link
    The paper presents the effect of polymer solution composition on the morphology, mechanical properties and drug permeability of the asymmetric polyamide 6 (PA6) membranes prepared by immersion precipitation. The effect of polymer solution composition on morphology, mechanical properties and permeability of the produced membrane is considered, since these properties are of relevance for drug delivery applications. PA6-formic acid-deionized water solutions were used to prepare membranes for further characterization with differential scanning calorimetry and scanning electron microscopy for morphology analysis, tensile testing and drug permeability tests. The results show that the amount of PA6 does not significantly affect morphology of the membrane, while having pronounced effect on tensile elastic modulus (50% increase). On the other hand, the concentration of formic acid in solution (dissolution intensity) influences crystallization dynamics and significantly changes the morphology of membrane (in the range of approximately 75-100 wt% of formic acid concentrations), consequently having effect on drug permeability
    corecore