266 research outputs found

    Failed MitraClip therapy: surgical revision in high-risk patients

    Get PDF
    Background: MitraClip implantation is a valid interventional option that offers acceptable short-term results. Surgery after failed MitraClip procedures remains challenging in high-risk patients. The data on these cases are limited by the small sample numbers. Aim: The aim of our study is to show, that mitral valve surgery could be possible and more advantageous, even in high-risk patients. Methods: Between 2010 and 2016, nine patients underwent mitral valve surgery after failed MitraClip therapy at our institution. Results: The patients’ ages ranged from 19 to 75 years (mean: 61.2 ± 19.6 years). The median interval between the MitraClip intervention and surgical revision was 45 days (range: 0 to 1087 days). In eight of nine patients, the MitraClip intervention was initially successful and the mitral regurgitation was reduced. Only one patient had undergone cardiac surgery previously. Intra-operatively, leaflet perforation or rupture, MitraClip detachment, and chordal or papillary muscle rupture were potentially the causes of recurrent mitral regurgitation. There were three early deaths. One year after surgery, the six remaining patients were alive. Conclusions: Mitral valve surgery can be successfully performed after failed MitraClip therapy in high-risk patients. The initial indication for MitraClip therapy should be considered carefully for possible surgical repair

    Stellar Envelopes as Sources of Broad Line Region Emission: New Possibilities Allowed

    Get PDF
    In Active Galactic Nuclei (AGNs) the presence of a star cluster around the central black hole can have several effects on the dynamics and the emission of the global system. In this paper we analyze the interaction of stellar atmospheres with a wind outflowing from the central region of the AGN nucleus. Even a small mass loss from stars, as well as possible star collisions, can give a non-negligible contribution in feeding matter into the AGN nuclear wind. Moreover, stellar mass loss can produce envelopes surrounding stars that turn out to be suitable for reproducing the observed emission from the Broad Line Region (BLR). In this framework, the envelope can be confined by the bow shock arising from the interaction between the expanding stellar atmosphere and the AGN nuclear wind.Comment: 21 pages, Latex, accepted for publication in A&

    Unusual magnetoelectric effect in paramagnetic rare-earth langasite

    Get PDF
    Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed matter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Hox_{x}La3−x_{3-x}Ga5_5SiO14_{14}, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.Comment: 8 pages, 3 figure

    Photometric redshifts from reconstructed QSO templates

    Get PDF
    From SDSS commissioning photometric and spectroscopic data, we investigate the utility of photometric redshift techniques to the task of estimating QSO redshifts. We consider empirical methods (e.g. nearest-neighbor searches and polynomial fitting), standard spectral template fitting and hybrid approaches (i.e. training spectral templates from spectroscopic and photometric observations of QSOs). We find that in all cases, due to the presence of strong emission-lines within the QSO spectra, the nearest-neighbor and template fitting methods are superior to the polynomial fitting approach. Applying a novel reconstruction technique, we can, from the SDSS multicolor photometry, reconstruct a statistical representation of the underlying SEDs of the SDSS QSOs. Although, the reconstructed templates are based on only broadband photometry the common emission lines present within the QSO spectra can be recovered in the resulting spectral energy distributions. The technique should be useful in searching for spectral differences among QSOs at a given redshift, in searching for spectral evolution of QSOs, in comparing photometric redshifts for objects beyond the SDSS spectroscopic sample with those in the well calibrated photometric redshifts for objects brighter than 20th magnitude and in searching for systematic and time variable effects in the SDSS broad band photometric and spectral photometric calibrations.Comment: 21 pages, 9 figures, LaTeX AASTeX, submitted to A

    Central extracorporeal life support with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure

    Get PDF
    BACKGROUND: The purpose of this prospective study was to evaluate the effects and functional outcome of central extracorporeal life support (ECLS) with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure. METHODS: Between August 2010 and August 2013, 12 consecutive patients (2 female) with a mean age of 31.6 ± 15.1 years received central ECLS with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure. Underlying disease was acute cardiac decompensation due to dilated cardiomyopathy (n = 3, 25%), coronary artery disease with acute myocardial infarction (AMI) (n = 3, 25%), and acute myocarditis (n = 6, 50%). We routinely implemented ECLS by cannulating the ascending aorta, right atrium and inserting a left ventricular decompression cannula vent via the right superior pulmonary vein. RESULTS: All patients were successfully bridged to either recovery (n = 3, 25%), long-term biventricular support (n = 6, 50%) or cardiac transplantation (n = 3, 25%). Seven patients (58.3%) were discharged after a mean hospital stay of 42 ± 11.9 days. The overall survival from ECLS implantation to the end of the study was 58.3%. The cumulative ICU stay was 23.1 ± 9.6 days. The length of support was 8.0 ± 4.3 days (range 3-17 days). CONCLUSIONS: We strongly recommend left ventricular decompression in refractory cardiogenic shock and lung failure to avoid pulmonary edema, left heart distension and facilitate myocardial recovery

    Total Aortic Arch Replacement: Superior Ventriculo-Arterial Coupling with Decellularized Allografts Compared with Conventional Prostheses.

    Get PDF
    BACKGROUND: To date, no experimental or clinical study provides detailed analysis of vascular impedance changes after total aortic arch replacement. This study investigated ventriculoarterial coupling and vascular impedance after replacement of the aortic arch with conventional prostheses vs. decellularized allografts. METHODS: After preparing decellularized aortic arch allografts, their mechanical, histological and biochemical properties were evaluated and compared to native aortic arches and conventional prostheses in vitro. In open-chest dogs, total aortic arch replacement was performed with conventional prostheses and compared to decellularized allografts (n = 5/group). Aortic flow and pressure were recorded continuously, left ventricular pressure-volume relations were measured by using a pressure-conductance catheter. From the hemodynamic variables end-systolic elastance (Ees), arterial elastance (Ea) and ventriculoarterial coupling were calculated. Characteristic impedance (Z) was assessed by Fourier analysis. RESULTS: While Ees did not differ between the groups and over time (4.1+/-1.19 vs. 4.58+/-1.39 mmHg/mL and 3.21+/-0.97 vs. 3.96+/-1.16 mmHg/mL), Ea showed a higher increase in the prosthesis group (4.01+/-0.67 vs. 6.18+/-0.20 mmHg/mL, P<0.05) in comparison to decellularized allografts (5.03+/-0.35 vs. 5.99+/-1.09 mmHg/mL). This led to impaired ventriculoarterial coupling in the prosthesis group, while it remained unchanged in the allograft group (62.5+/-50.9 vs. 3.9+/-23.4%). Z showed a strong increasing tendency in the prosthesis group and it was markedly higher after replacement when compared to decellularized allografts (44.6+/-8.3dyn.sec.cm-5 vs. 32.4+/-2.0dyn.sec.cm-5, P<0.05). CONCLUSIONS: Total aortic arch replacement leads to contractility-afterload mismatch by means of increased impedance and invert ventriculoarterial coupling ratio after implantation of conventional prostheses. Implantation of decellularized allografts preserves vascular impedance thereby improving ventriculoarterial mechanoenergetics after aortic arch replacement

    Bioartificial heart: a human-sized porcine model - the way ahead

    Get PDF
    BACKGROUND: A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. METHODS: We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions. RESULTS: Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6+/-3.2 ng DNA/mg tissue vs. 473.2+/-13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. CONCLUSIONS: Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure

    Superior Ventriculo-Arterial Coupling with Decellularized Allografts Compared with Conventional Prostheses

    Get PDF
    Background To date, no experimental or clinical study provides detailed analysis of vascular impedance changes after total aortic arch replacement. This study investigated ventriculoarterial coupling and vascular impedance after replacement of the aortic arch with conventional prostheses vs. decellularized allografts. Methods After preparing decellularized aortic arch allografts, their mechanical, histological and biochemical properties were evaluated and compared to native aortic arches and conventional prostheses in vitro. In open-chest dogs, total aortic arch replacement was performed with conventional prostheses and compared to decellularized allografts (n = 5/group). Aortic flow and pressure were recorded continuously, left ventricular pressure-volume relations were measured by using a pressure- conductance catheter. From the hemodynamic variables end-systolic elastance (Ees), arterial elastance (Ea) and ventriculoarterial coupling were calculated. Characteristic impedance (Z) was assessed by Fourier analysis. Results While Ees did not differ between the groups and over time (4.1±1.19 vs. 4.58±1.39 mmHg/mL and 3.21±0.97 vs. 3.96±1.16 mmHg/mL), Ea showed a higher increase in the prosthesis group (4.01±0.67 vs. 6.18±0.20 mmHg/mL, P<0.05) in comparison to decellularized allografts (5.03±0.35 vs. 5.99±1.09 mmHg/mL). This led to impaired ventriculoarterial coupling in the prosthesis group, while it remained unchanged in the allograft group (62.5±50.9 vs. 3.9±23.4%). Z showed a strong increasing tendency in the prosthesis group and it was markedly higher after replacement when compared to decellularized allografts (44.6±8.3dyn·sec·cm−5 vs. 32.4±2.0dyn·sec·cm−5, P<0.05). Conclusions Total aortic arch replacement leads to contractility-afterload mismatch by means of increased impedance and invert ventriculoarterial coupling ratio after implantation of conventional prostheses. Implantation of decellularized allografts preserves vascular impedance thereby improving ventriculoarterial mechanoenergetics after aortic arch replacement
    • 

    corecore