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Abstract

Background: A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native
hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ
regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts.

Methods: We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff
circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy,
quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/
volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded
them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated
physiological conditions.

Results: Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin
and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls
(82.663.2 ng DNA/mg tissue vs. 473.2613.4 ng DNA/mg tissue, p,0.05). Recellularized porcine whole-heart neoscaffolds
demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10
days, with perfused organ culture maintained for up to 3 weeks.

Conclusions: Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to
future clinical strategies in the treatment of heart failure.
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Introduction

Heart transplantation is the definitive treatment for end-stage

heart failure, but is limited by donor organ shortage and waiting-

list mortality. Whereas mechanical circulatory support mandates

anticoagulation with its inherent risks, heart transplant recipients

must live with the ‘‘necessary evil’’ of lifelong immunosuppression

and invasive surveillance studies, often begetting hypertension,

diabetes, renal failure, malignancy and other sequelae of chronic

immunosuppression [1,2]. A potential solution is a bioartificial or

‘‘tissue-engineered’’ heart. If whole hearts can be decellularized

while preserving 3D geometry and vasculature, the resulting

scaffold may provide an architectural skeleton for whole-organ

tissue engineering. However, due to the density, mass, and 3D

architecture of most whole organs such as the heart, liver, and

kidney, traditional decellularization methods like immersion-

agitation are ineffective at removing cellular material [3].

Similarly, tissue-engineering methods used for heart valves [4–6]

cannot be simply extended to myocardium because of its biological

complexity- native myocardium is a dense, highly vascular tissue

with nearly one capillary per cell and thickness of up to one

centimeter; diffusion cannot support tissues thicker than 100

microns and would be insufficient to support a thick cardiac

tissue–engineered construct [7]. Thus, tissue-engineered myocar-

dium requires elaborate ex vivo culture conditions.

Whereas considerable progress has been made with rat hearts

[7–9], experiments with human-sized porcine hearts lag much

behind [10,11]. We present the first experimental prototype of a
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tissue-engineered porcine whole-heart, with perfused organ culture

in a bioreactor and formation of myocardium that generates

intrinsic electrical activity.

Material and Methods

Procurement of whole porcine hearts
32 porcine hearts (approximate weight 300 g) were procured

with aseptic precautions from adult female Large-White-Landrace

crossbred pigs (30–45 kg). All animals received humane care in

compliance with the Principles of Laboratory Animal Care

formulated by the National Society for Medical Research and

the Guide for the Care and Use of Laboratory Animals prepared

by the Institute of Laboratory Animal Resources and published by

the National Institutes of Health (NIH Publication No. 86–23,

revised 1996). All procedures followed the European Agreement of

Vertebrate Animal Protection for Experimental Use (86/609).

This investigation was reviewed and approved by the ethical

committee for animal experimentation at the University of

Heidelberg (35-9185.82/A-27/07).

Anesthetic and Surgical Procedures
Intravascular access was secured via a superficial ear vein of the

animal, as described previously [12]. After intramuscular injection

of 4 mg Azaperone (Stresnil, Janssen, High Wycombe, UK) and

0.01 mg/kg Fentanyl, 3–4 mg/kg Hypnomidate was administered

intravenously, followed by intubation and ventilation with 40%

FiO2. Muscle relaxation was achieved with Pancuronium (0.3 mg/

kg/h). After systemic heparinization and median sternotomy, we

arrested the heart with antegrade cardioplegia using cold (4uC)

Custodiol solution (HTK solution, Dr. Franz Köhler Chemie

GmbH, Alsbach-Hähnlein, Germany). We transected the venae

cavae, pulmonary veins, pulmonary artery and thoracic aorta, and

explanted the heart.

Perfusion Decellularization Circuit
The modified Langendorff decellularization model comprised a

perfusion circuit and a pressure control module, as described

previously [11]. All components were sterilized by conventional

autoclaving and connected with 3/8’’ silicon tubes (Maquet,

Rastatt, Germany). We cannulated the aorta with a 25–27 mm

Teflon cannula for antegrade coronary perfusion, powered by a

roller pump (Stöckert, München, Deutschland) controlled via a

pressure transducer (Medex Smith Medical, Kent, United

Kingdom). A computer system (Engineo, Mainz, Germany),

continuously recorded the perfusion pressure. We used a heat

exchanger (D720 Helios C, Dideco, Mirandola, Italy) for perfusate

temperature-control, and interposed an airtrap (Gambro Medical

Line, Hechingen, Germany) to ensure air-free perfusate. The

returning (outflow) perfusate was collected into a reservoir

(Maquet AR 28150, Rastatt, Germany), with total circuit volume

of 2500 mL.

We perfused the hearts at a constant perfusion pressure of

100 mmHg with a warm (37uC) solution of 4% sodium dodecyl

sulfate (SDS) in phosphate-buffered solution (PBS, Sigma,

Munich, Germany) at 2 L/min for 12 h, intermittently washing

the hearts with PBS for 15 min every 3 h to remove residual

substances. We then perfused antibiotic-containing PBS enriched

with 100 mg/mL penicillin-streptomycin (Biochrom, Berlin, Ger-

many) through the hearts at 1.5 L/min for 24 h to remove any

residual detergent and cell debris, followed by overnight incuba-

tion in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen,

Darmstadt, Germany) at 4uC.

Evaluation of Biomechanical Stability
For the measurement of mechanical stability n = 6 porcine

hearts in each experimental group (native vs. decellularized) were

used. We introduced a latex balloon catheter into the left ventricle

(LV) via the aorta and connected it to a precision calibrated

syringe for administration and withdrawal of fluid. We then

advanced a Millar micromanometer (Millar Instruments, Inc,

Houston, TX, USA) into the LV via the apex, and measured the

LV pressure at different LV volumes.

DNA Quantification
We processed sections from seven different regions of the heart

(apex, LV, right ventricle, septum, papillary muscle, right and left

atrium) for spectrophotometric quantification to determine the

concentrations of residual DNA in the decellularized group and

compared these to controls. Samples (approximately 10–15 mg)

were normalized according to equivalent dry weight in mg. The

DNA content was subjected to standard silica-membrane-based

purification (QIAamp DNA Mini Kit, Qiagen, Basel, Switzerland)

before quantification by spectrophotometry.

Glycosaminoglycan and Elastin Analysis
Total sulfated glycosaminoglycans and cross-linked elastin

within the decellularized hearts were determined by a commercial

kit (Biocolor, Carrickfergus, United Kingdom) as per the

manufacturer’s instructions. Lyophilized tissue samples of left

and right ventricles from both native and decellularized hearts

were digested with papain for the glycosaminoglycan and elastin

assay. All values were adjusted to 1 mg dry tissue weight for

comparison.

Transmission Electron Microscopy (TEM)
Tissue specimens of the aortic valve of the decellularized

porcine hearts were fixed in 2.5% glutaraldehyde and embedded

in Epon resin (PELCO Eponate 12 Kit, 18010, Ted Pella, Inc,

Redding, CA, USA). Standard ultrathin sections were prepared,

and TEM performed using a Zeiss analytical EM 902 (Zeiss,

Oberkochen, Germany) microscope coupled with a Pro-Scan

digital camera (Tröndle, Munich, Germany).

Histology and Immunofluorescence
Hearts were fixed in 10% formalin, embedded in paraffin and

sectioned into 5 mm sections. Heart tissue was stained with

Masson’s trichrome stain (Fomori, procedure HT10, Sigma-

Aldrich) to distinguish the cells from the surrounding connective

tissue. 49,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich Inc,

Munich, Germany) and hematoxylin/eosin (H&E) stains were

used for initial inspection for remnant nuclear structures. Modified

Movat’s Pentachrome (Mastertechs, Lodi, CA, USA) stain was

used to visualize extracellular matrix components (ECM) such as

collagen, elastin and glycosaminoglycans. Herovici stain (Ameri-

can MasterTech, Lodi, USA) was used to identify collagen types I

and III in the newly deposited matrix. PECAM-1 (Polyclonal

Rabbit IgG, Santa Cruz Biotechnology, Heidelberg, Germany)

fluorescent immunohistochemistry [11,13] was employed for

identification of endothelial cells following reseeding with

HUVEC. Stained samples from both decellularized and control

(native-heart) groups were examined histologically, and the degree

of re-endothelialization and preservation of ECM evaluated (blind

analysis) by two independent pathologists. The sections were

analyzed by routine bright field and fluorescence microscopy

(Olympus Optical Co, BX 51 and CKX 41 microscope). Images

Bioartificial Heart
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were acquired with the CellA Soft Imaging System (Olympus Soft

Imaging Solutions, Münster, Germany).

Whole-heart bioreactor
Our bioreactor system is based on the BIOSTAT B-DCU II

(Sartorius Stedim Biotech GmbH, Germany) which comprises a

BioPAT DCU control tower (Figure 1) and a connected, custom-

made culture-vessel for whole heart engineering. The culture-

vessel is made of transparent glass, permitting direct observation,

operated in a controlled milieu (37uC, 95% air, 5% CO2) with

precise temperature- and pH-control. The system has a circulating

volume of 5 L, with silicon-tubing connections, gas-ports for

aeration, and provision for up to six peristaltic pumps for addition

of corrective agents and/or volume-modulation. A high perfor-

mance Servo-drive motor assembly combines low shear, gentle

agitation for cell cultures and high speed mixing for microbial high

cell density cultivation, ensuring high oxygen-transfer rates. The

control system (DCU-4) ensures continuous, controlled perfusion

flows and pressure.

Murine neonatal cardiomyocytes
We harvested cardiomyocytes from freshly dissected ventricles

of 1 to 3 day-old Sprague-Dawley rats (n = 30) using an isolation

kit (Cellutron, Highland Park, NJ), promptly after euthanasia by

decapitation. Cells were plated and cultured as described

previously [14] in high-serum plating media (DMEM, 17%

M199, 10% horse serum (HS), 5% fetal bovine serum (FBS),

100 U/mL penicillin and 50 mg/ml streptomycin) at

10,000 cells/cm2. After 18 hours, we transferred the cells to low

serum maintenance media (DMEM, 18.5% M199, 5% HS, 1%

FBS and antibiotics). Cell cultures were maintained at 37uC and

5% CO2 with addition of fresh maintenance media until

optimized for injection, as confirmed by microscopy.

Human umbilical cord-derived endothelial cells (HUVEC)
After review and approval by the ethical committee at the

University of Heidelberg, we obtained written informed consent

from 18 healthy pregnant women, procured umbilical cords

immediately after delivery and stored them in PBS at 4uC. We

cannulated the umbilical vein on both sides, flushed it with PBS,

and filled it with 20 mL of 0.1% collagenase–dispase (Boehringer

Mannheim, Mannheim, Germany) in Hanks’ balanced salt

solution (Gibco, Grand Island, NY, USA). After 20 min of

incubation at 37uC, we gathered the cell suspension by rinsing the

vein with 20 mL of medium 131 (Gibco, Grand Island, NY, USA)

enriched with 10% FBS. Following centrifugation 1200 rpm for 10

minutes, we cultivated the clustered cells in 25-mL laboratory

flasks under humidified incubator conditions until individual

colonies coalesced. Finally, we confirmed the endothelial pheno-

type of the cultivated cells by microscopy and immunohistochem-

istry for expression of von Willebrand factor (vWF).

Recellularization of decellularized porcine hearts
We mounted the decellularized porcine hearts in the bioreactor

and perfused it at 37uC for 24 h at 100 mL/min with oxygenated

cell-medium containing 1% gentamicin, to provide nutrients,

ensure a physiological pH and achieve optimal conditions for

recellularization. We then infused 5–66106 cells (HUVEC passage

3–6) via the aorta into the coronary arteries, temporarily

interrupting the perfusion for 60 min to facilitate attachment of

the HUVEC. For cell seeding, we delivered 8–96106 cells

(neonatal cardiomyocytes) suspended in low serum maintenance

media through five intramural injections (8–10 mm depth) of

200 mL each in the anterior left ventricle between the 1st and 2nd

diagonal branch with a 27-G needle and a 1-mL tuberculin

syringe.

Organ perfusion of recellularized porcine hearts
We sutured sterile electrodes to the left midventricular wall, and

paced the recellularized hearts using a Medtronic external

pacemaker 5388 (Medtronic, Minnesota, USA). The culture

medium in the bioreactor was replaced daily to replenish nutrients

and eliminate waste products, with blood-gas analysis (Rapidlab

860, Siemens, Mannheim, Germany) every 12 h. We perfused

with low serum maintenance media for 12–14 days. Four

preparations were discontinued early because of infection (after

5, 7 and 11 days). The maximum perfusion time was 3 weeks, with

maximum flows of 3.5 L/min. Following biomechanical assess-

ment, we dissected the whole heart neoscaffolds, and sectioned

and stained them as described before. As ‘control’ for comparison,

Figure 1. Whole-heart bioreactor: BIOSTAT B-DCU II and
BioPAT DCU control tower (Sartorius Stedim Biotech GmbH,
Germany).
doi:10.1371/journal.pone.0111591.g001
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we used decellularized but non-recellularized native-heart scaf-

folds, i.e. native-heart matrix treated identically, with the

exception of the addition of cells.

Live/Death Assay
We performed a live/death assay to assess the viability of

reseeded cardiomyocytes in decellularized hearts after 7 days and

14 days in bioreactor culture. We washed tissue-bits in PBS thrice

(365 min) and stained the tissue-bits with 2 mM calcein AM and

4 mM ethidium bromide (EthD-1) solution (live/dead assay;

Invitrogen Corp. L3224) for 30 min at room temperature,

according to the manufacturer’s instructions. We then re-washed

the tissue in PBS (365 min) and analyzed it by confocal

microscopy.

Evaluation of electrical activity of recellularized
whole-heart neoscaffolds

For multi-electrode array (MEA) recordings after bioreactor

conditioning, we took tissue bits from the injection area of the

whole-heart neoscaffolds and fixed them in the center of the

recording plates over a micro-drop of 0.1% gelatin. Electrical field

potentials were recorded on a 60-channel amplifier (Multichannel

Systems, Reutlingen, Germany), fed to threshold discriminators

providing single event data for each spike, and analyzed. The

sampling rate was 1.0 kHz, the cut-off frequencies of the filters

were 0.5 Hz (high pass) and 1.0 kHz (low pass). We estimated the

origin and direction of field potential propagation on the basis of

latencies between electrical spikes at neighboring electrodes. For

this purpose, we created event channels, taking the minimum of a

spike as the event time. We then analyzed latencies between

neighboring electrodes for $2 min of continuous recording to

unequivocally identify the pacemaker site and the subsequent

pathway of the spreading electrical signal.

Statistical analysis
All values in the figures and text are shown as mean 6 SEM.

We performed a two-tailed independent Student’s t-test to

evaluate differences between native hearts (control) versus the

decellularized hearts, considering p-values ,0.05 statistically

significant. SPSS 13.0 statistical software (SPSS Inc, Chicago,

IL, USA) was used for data analysis.

Results

Perfusion-decellularization of porcine whole-hearts
Antegrade perfusion in the modified Langendorff model yielded

fully decellularized porcine whole-hearts (Figure 2A, 2B). Histo-

logical evaluation revealed no remaining nuclei or contractile

elements (Figure 2C, 2D). The DNA content was significantly

decreased after decellularization (473.2613.4 ng DNA/mg tissue

in the control group vs. 82.663.2 ng DNA/mg tissue in the

decellularized group (p,0.05), whereas the glycosaminoglycan

and elastin content were not significantly changed (Table 1).

Properties of decellularized porcine whole-heart
neoscaffolds

Following decellularization, the cardiac cells were removed

from the hearts, but collagen types I and III remained, with

preserved fiber composition and orientation of the myocardial

ECM (Figure 3 A-H). The vascular basal laminae were preserved

within the retained ventricular ECM, bereft of endothelial cells or

myocytes. Larger coronary vessels and the smaller third- and

fourth-level branches remained patent (Figure 4A, 4B). Fiber

orientation and composition was also preserved in the decellular-

ized aortic wall and aortic valve leaflet as demonstrated by TEM

analysis (Figure 4C, 4D). The aortic valve remained competent

(Figure 4E, 4F), as demonstrated by Evans blue perfusion

studies.

Results of the biomechanical tests are shown in Figure 5.

Native and decellularized porcine hearts showed no major

differences in biomechanical behavior, indicating mechanical/

structural stability of the neoscaffold.

Properties of recellularized porcine whole-heart
neoscaffolds

Histological analysis of recellularized porcine whole-heart

neoscaffolds revealed a new layer of cobblestone-like cells in the

coronary arteries, in both large and small coronary vessels, with

partial interruption. Immunohistochemical interrogation identified

the new surface cell layer as endothelial cells, confirmed by

positive staining for PECAM-1 (Figure 6E). The native endo-

thelial cell layer was reseeded by HUVEC (Figure 6B). The

average recellularization with neonatal cardiomyocytes (Fig-
ure 6A) per cross-section of scaffold was more than 50% around

the injection sites, with significant distal attrition. Recellularization

was greatest in the area of injection (left ventricular mid-wall)

(Figure 6C), compared to untreated areas (left ventricular apex

and right ventricle). Live/death assay demonstrated preserved

viability of the reseeded neonatal cardiac cells (Figure 6D).

After ten days of bioreactor perfusion following cell seeding, the

bioartificial hearts showed measurable electrical activity. MEA

Figure 2. Representative images of a porcine heart before (A)
and after (B) decellularization with sodium dodecyl sulfate
(SDS). All structures including the coronary vasculature (B, red arrow)
are preserved. Hematoxylin and eosin (HE) staining of ventricular tissue
before (C) and after perfusion decellularization (D) showing no remnant
nuclear structures after treatment with SDS, with maintained extracel-
lular matrix and coronary vessels (D, black arrow). Scale bars, 200 mm.
doi:10.1371/journal.pone.0111591.g002
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demonstrated discrete foci with electric voltage undulations of up

to 200 mV in a time scale of ca. 500–1000 ms (Figure 7).

Discussion

We present the first experimental prototype of a tissue-

engineered human-sized porcine whole-heart, with perfused organ

culture in a bioreactor and formation of myocardium that

generates intrinsic electrical activity.

The term ‘‘Tissue Engineering’’ was introduced in 1987 by

members of the US National Science Foundation (NSF) in

Washington, D.C. and aims at generating functional 3D tissues

outside of the body that can be tailored in size, shape, and function

according to the respective needs before implanting them into the

body [15]. Cardiac tissue engineering has historically involved

several approaches: synthetic- or animal-derived extracellular

matrix patches transplanted into small animals [16], cardiac

myocyte culture with/without addition of extracellular matrix

[17], and extraneous synthetic material as a scaffold for cell-

seeding [18]. However, for cardiac tissue engineering to realize its

full clinical potential, engineered tissues and organs must be

structurally and functionally similar to healthy myocardium.

Shortcomings with the previous approaches included unfavourable

matrix properties such as limited diffusion capacity, low mechan-

ical compliance, liberation of potentially toxic substances during

degradation, and incompatibility with physiological cell growth

[15]. Stacked cardiomyocyte sheets [19] have been used, but

again, the creation of sufficiently thick cardiac sheets is limited by

the inability to create the geometry necessary to support the high

oxygen and energy demands of cardiomyocytes at thickness

greater than ,100 mm [20]– the ‘‘diffusion barrier’’. Hence, tissue

engineered myocardium requires elaborate ex vivo culture

conditions.

Ott et al published their seminal work on perfusion-decellular-

ization with cell-seeding in rat hearts [8], with subsequent progress

by others [7,9]. Whereas these experiments have undeniably been

harbingers of progress in cardiac tissue engineering, murine hearts

are much smaller in size and complexity than human hearts. On

the other hand, porcine hearts are of a size comparable to human

hearts, with similar physiology and anatomical features. A

relatively short generation-interval of pigs means that a consider-

able number of bred porcine offspring can be procured in a

reasonable time-period. Also, pigs have long been used in

xenotransplantation studies, with genetically modified pigs shown

to be significantly less susceptible to human complement-

dependent cytotoxicity [21]. In addition, cardiac ECM exhibits

remarkable homology between porcine and human hearts [22].

All these factors highlight the importance of porcine hearts in the

attempt to develop a human-sized bioartificial heart.

Wainwright et al. [10] reported their work with porcine hearts,

with decellularization accomplished by perfusion of hearts with

different solutions and freezing at 280uC for cell lysis. We recently

described a method for porcine heart decellularization that has the

advantage of preserving biomechanical strength by minimizing

damage to the ECM, with comparable reduction of cellular

content using single-perfusion with SDS under constant pressure

[11]. Whereas Wainwright et al [10] used sterilization pouches to

reseed the surface of ECM sheets with subsequent lack of intrinsic

electrical activity, our method preserves the 3D architecture of the

entire heart, with transmural cardiomyocyte seeding and organ

culture in a whole-heart bioreactor, with demonstrable myocardial

electrical activity.

We used perfusion decellularization of porcine whole-hearts to

develop a cardiac ECM scaffold with perfusable coronary

vasculature, patent cardiac valves and intact three-dimensional

architecture. The decellularized hearts showed similar mechanical

Table 1. Results of Extracellular Matrix Analysis.

Glycosaminoglycan Content Elastin Content

Native Heart 4.6160.15 mg 42.17612.46 mg

Decellularized Heart 5.1460.35 mg 23.6663.28 mg

All values are expressed as mean 6 SEM and adjusted to 1 mg lyophilized tissue sample.
doi:10.1371/journal.pone.0111591.t001

Figure 3. Images of native (A, C, E, G) and decellularized ventricular tissue (B, D, F, H) stained with DAPI, Masson’s Trichrome Stain
(Masson), Herovici’s Stain (Herovici) and Movat’s Pentachrome Stain (Movat) revealed absence of nuclear staining after
decellularization (B) and stable preservation of extracellular matrix collagen, elastic fibers including large coronary vessels (D, H,
red arrow) after the decellularization procedure. Scale bars, 200 mm.
doi:10.1371/journal.pone.0111591.g003

Bioartificial Heart
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stability as native hearts with no significant differences in

biomechanical behavior. We could successfully repopulate the

decellularized porcine hearts with murine cardiomyocytes and

HUVEC. Whereas recellularization with cardiomyocytes was

more evident in the areas of intramural injection, re-endothelia-

lization was restricted to the coronary vasculature with delivery by

perfusion, resulting in the loss of a significant number of cells in the

effluent. Nevertheless, the native endothelial cell layer was

reseeded by HUVECs, albeit with partial interruption. Although

reseeding has been previously reported in rats [7–9], this is the first

time that this technology has been scaled to whole hearts of human

size and complexity. Porcine hearts, however, pose unique

challenges. The costs involved are exponentially greater, translat-

ing into a relatively modest number of animals that can be

procured concurrently. Whereas it would be ideal to reseed

decellularized hearts with conspecific (from the same species)

cardiac cells, the logistics of procuring porcine neonatal cardio-

myocytes in amounts sufficient for reseeding are formidable and,

presently, beyond our institutional resources. Nevertheless, it is

encouraging that, despite reseeding with cardiomyocytes from a

different/lower species, the decellularized porcine hearts exhibited

measurable intrinsic electrical activity. Possibly, following reseed-

ing with conspecific cardiomyocytes, a human-sized whole-heart

neoscaffold may develop contractility and generate stroke work,

evolving into a fully functional bioartificial heart as an alternative

to transplantation. Presently, however, bioartificial heart trans-

plantation is limited to heterotopic murine models, with perfused

organ culture in the recellularized porcine model maintained for

three weeks. Ongoing studies are directed at improving recellular-

ization methods to enhance the dispersion/retention of reseeded

cells, optimizing in-vitro strategies for organ maturation, and

identifying stem/progenitor cells that can be harnessed for mass-

production of autologous or off-the-shelf bioartificial solid organs

for transplantation.

In conclusion, we present the first experimental prototype of a

tissue-engineered human-sized porcine whole-heart, with perfused

organ culture in a bioreactor and formation of myocardium that

generates intrinsic electrical activity. Porcine hearts provide a

promising tissue-engineering platform for the development of

bioartificial hearts that may lead to future clinical strategies in the

treatment of heart failure.

Figure 4. Photomicrographs of unstained tissue samples demonstrating intact coronary vasculature (A, B) with intact third- and
fourth-level vessels (A, red arrows). The extracellular matrix composition of the aortic wall (C) and aortic valve leaflet (D) was preserved after
decellularization and showed no remnant nuclear material as demonstrated by hematoxylin and eosin (HE) staining (C, D) and TEM analysis (box in
D). Also the aortic valve remained competent after decellularization (E, F).
doi:10.1371/journal.pone.0111591.g004

Figure 5. Results of biomechanical measurements. Left ventric-
ular peak pressure vs. volume. Decellularized hearts showed similar
mechanical stability as native hearts with no significant differences in
biomechanical behavior. All values are expressed as mean 6 SEM.
doi:10.1371/journal.pone.0111591.g005

Bioartificial Heart
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Figure 6. Whole organ concept. Cardiomyocytes (A, 606 magnification) and human umbilical vein endothelial cells (HUVEC) (B, 606
magnification) were reseeded in the decellularized porcine heart (center). Histological analysis demonstrated neonatal cardiomyocytes around the
injection sites in the left ventricular wall (C, red arrow). Live/death assay demonstrated viability of the reseeded neonatal cardiomyocytes in the
cultured bioartificial hearts (D). A de novo layer of endothelial cells was generated, indicated by positive PECAM-1 staining (E, cross section left
coronary artery). However, the new surface cell layer of endothelial cells was partially interrupted (E, red arrows). Scale bars, 200 mm.
doi:10.1371/journal.pone.0111591.g006

Figure 7. Demonstration of multi-electrode array electric voltage undulations of up to 200 mV in a time scale from ca. 500–1000 ms
(red arrows) as a measure of myocardial electrical activity.
doi:10.1371/journal.pone.0111591.g007

Bioartificial Heart
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Study Limitations
We could not obtain porcine neonatal cardiomyocytes for

reseeding due to logistic/financial/ethical constraints and local

government regulations. Xenocompatibility (species barrier) may

affect the uptake and viability of murine cardiac cells and

HUVECs reseeded in porcine hearts, which may have influenced

the findings of this study.
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