4 research outputs found

    Towards fast whole-body PET/MR: Investigation of PET image quality versus reduced PET acquisition times.

    No full text
    PURPOSE:The trend towards faster acquisition protocols in whole-body positron emission tomography/magnetic resonance (PET/MR) arises the question of whether short PET data acquisition protocols in a whole-body multi-station context allow for reduced PET acquisition times while providing adequate PET image quality and accurate quantification parameters. The study goal is to investigate how reducing PET acquisition times affects PET image quality and quantification in whole-body PET/MR in patients with oncologic findings. METHODS:Fifty-one patients with different oncologic findings underwent a clinical whole-body 18F-Fluorodeoxyglucose PET/MR examination. PET data was reconstructed with 4, 3, 2, and 1 min/bed time intervals for each patient to simulate the effect of reduced PET acquisition times. The 4-minute PET reconstructions served as reference standard. All whole-body PET data sets were analyzed regarding image quality, lesion detectability, PET quantification and standardized uptake values. RESULTS:A total of 91 lesions were detected in the 4-minute PET reconstructions. The same number of congruent lesions was also noticed in the 3 and 2 minutes-per-bed (mpb) reconstructed images. A total of 2 lesions in 2 patients was not detected in the 1 minute PET data reconstructions due to poor image quality. Image noise in the blood pool increased from 22.2% (4 mpb) to 42.1% (1 mpb). Signal-to-noise ratio declined with shorter timeframes from 13.1 (4 mpb) to 9.3 (1 mpb). SUVmean and SUVmax showed no significant changes between 4 and 1 mpb reconstructed timeframes. CONCLUSIONS:Reconstruction of PET data with different time intervals has shown that 2 minutes acquisition time per bed position instead of 4 minutes is sufficient to provide accurate lesion detection and adequate image quality in a clinical setting, despite the trends to lower image quality with shorter PET acquisition times. This provides latitude for potential reduction of PET acquisition times in fast PET/MR whole-body examinations

    The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs

    No full text
    Reactive oxygen and nitrogen species (ROS and RNS) are naturally produced in all cells and organisms. Modifications of standard conditions alter reactive species generation and may result in oxidative stress. Because of the degradation of marine ecosystems, massive aquaculture productions, global change and pathogenic infections, oxidative stress is highly prevalent in marine bivalve molluscs. Haemocytes of bivalve molluscs produce ROS and RNS as part of their basal metabolism as well as in response to endogenous and exogenous stimuli. However, sources and pathways of reactive species production are currently poorly deciphered in marine bivalves, potentially leading to misinterpretations. Although sources and pathways of ROS and RNS productions are highly conserved between vertebrates and invertebrates, some uncommon pathways seem to only exist in marine bivalves. To understand the biology and pathobiology of ROS and RNS in haemocytes of marine bivalves, it is necessary to characterise their sources and pathways of production. The aims of the present review are to discuss the currently known and unknown intracellular sources of reactive oxygen and nitrogen species in marine bivalve molluscs, in light of terrestrial vertebrates, and to expose principal pitfalls usually encountered. (C) 2014 Elsevier Ltd. All rights reserved
    corecore