35 research outputs found

    Coral reef conservation solution-scape white paper

    Get PDF
    In the face of climate change, warming oceans, and repeated mass coral bleaching, coral reef conservation is at a timely crossroads. There is a new urgency to support and strengthen a rich history of conservation partnerships and actions, while also building toward new actions to meet unparalleled global threats. The goal of this white paper is to synthesize and summarize the diversity of tools, approaches and solutions for coral reef conservation implemented to date and to understand the enabling conditions that lead to successful coral reef conservation. Framed as a “solution-scape,” this white paper seeks to support ongoing decisions to strengthen existing assets and build new investments into portfolios of global coral reef conservation that are equitable and aligned with diverse cultures and worldviews

    Platelets as autonomous drones for hemostatic and immune surveillance

    Get PDF
    Platelets participate in many important physiological processes, including hemostasis and immunity. However, despite their broad participation in these evolutionarily critical roles, the anucleate platelet is uniquely mammalian. In contrast with the large nucleated equivalents in lower vertebrates, we find that the design template for the evolutionary specialization of platelets shares remarkable similarities with human-engineered unmanned aerial vehicles in terms of overall autonomy, maneuverability, and expendability. Here, we review evidence illustrating how platelets are uniquely suited for surveillance and the manner in which they consequently provide various types of support to other cell types.J.L. Li is supported by Agency for Science, Technology and Research funding. A. Zarbock is supported by Deutsche Forschungsgemeinschaft (ZA428/13-1 and INST211/604-2 A05). A. Hidalgo is supported by Plan Estatal de InvestigaciĂłn CientĂ­fica y TĂ©cnica y de InnovaciĂłn 2013–2016 (SAF2015-65607-R and PCIN-2014-103), Programa Estatal de I+D+i Orientada a los Retos de la Sociedad Retos InvestigaciĂłn I+D+i from MECI, and cofunding from Fondo Europeo de Desarrollo Regional. Centro Nacional de Investigaciones Cardiovasculares Carlos III is supported by the MECI and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MECI award SEV-2015-0505).S

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Patterns and effects of disturbance in Caribbean macrophyte communities

    No full text
    This thesis examines a number of natural and anthropogenic disturbances within marine macrophyte habitats of the Caribbean. Understanding the effects of disturbance and the patterns associated with such dynamics is fundamental to ecological studies. Dynamics of interest included: interactions between populations; interactions between life history strategies; successional regimes; and alterations of community structure including loss of trophic heterogeneity and the possibility of "alternate" states. First I explored natural physical disturbance and succession. The dominance of macroalgae in the mid-shore, between areas of seagrass, challenged "classic" succession in such communities. I therefore proposed a model that included chronic "stress" by wave energy that could lead to a reversal in the climax state. Next, I investigated the importance of other grazers (i.e. trophic heterogeneity) in mediating the strength of trophic cascades (e.g. overgrazing). The enclosure experiments used suggested that different life history strategies respond differently to experimental conditions and that interference competition between specialist (conch) and generalist (urchins) grazers results in urchins switching to alternate resources and displaying lower condition. This dynamic may indirectly "buffer" the community against population expansions of urchins and overgrazing of diversity enhancing detritus. Under high nutrient enrichment, urchins maintained themselves, the trophic cascade and low diversity by switching to "expanded" autochthonous and "new" allochthonous resources. I continued to examine the effects of increasing nutrient enrichment, which correlated well with increasing human density, by examining eleven seagrass beds. The patterns of increasing consumer density and decreasing consumer diversity corresponded well to increasing enrichment and loss of autochthonous detritus. At high levels of enrichment, the community was dominated (> 90%)

    Predator Diet and Trophic Position Modified with Altered Habitat Morphology

    Get PDF
    Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This “dynamic food web approach” is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon (13C/12C) and nitrogen (15N/14N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our “dynamic food web approach” serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non-native or feral predators and human traffic on beaches

    Predator Diet and Trophic Position Modified with Altered Habitat Morphology

    No full text
    Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This “dynamic food web approach” is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon (13C/12C) and nitrogen (15N/14N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our “dynamic food web approach” serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non-native or feral predators and human traffic on beaches
    corecore