13 research outputs found

    Associations Between Lumbar Vertebral Bone Marrow and Paraspinal Muscle Fat Compositions—An Investigation by Chemical Shift Encoding-Based Water-Fat MRI

    Get PDF
    Purpose: Advanced magnetic resonance imaging (MRI) methods enable non-invasive quantification of body fat situated in different compartments. At the level of the lumbar spine, the paraspinal musculature is the compartment spatially and functionally closely related to the vertebral column, and both vertebral bone marrow fat (BMF) and paraspinal musculature fat contents have independently shown to be altered in various metabolic and degenerative diseases. However, despite their close relationships, potential correlations between fat compositions of these compartments remain largely unclear.Materials and Methods: Thirty-nine female subjects (38.5% premenopausal women, 29.9 ± 7.1 years; 61.5% postmenopausal women, 63.2 ± 6.3 years) underwent MRI at 3T of the lumbar spine using axially- and sagittally-prescribed gradient echo sequences for chemical shift encoding-based water-fat separation. The erector spinae muscles and vertebral bodies of L1–L5 were segmented to determine the proton density fat fraction (PDFF) of the paraspinal and vertebral bone marrow compartments. Correlations were calculated between the PDFF of the paraspinal muscle and bone marrow compartments.Results: The average PDFF of the paraspinal muscle and bone marrow compartments were significantly lower in premenopausal women when compared to postmenopausal women (11.6 ± 2.9% vs. 24.6 ± 7.1% & 28.8 ± 8.3% vs. 47.2 ± 8.5%; p < 0.001 for both comparisons). In premenopausal women, no significant correlation was found between the PDFF of the erector spinae muscles and the PDFF of the bone marrow of lumbar vertebral bodies (p = 0.907). In contrast, a significant correlation was shown in postmenopausal women (r = 0.457, p = 0.025). Significance was preserved after inclusion of age and body mass index (BMI) as control variables (r = 0.472, p = 0.027).Conclusion: This study revealed significant correlations between the PDFF of paraspinal and vertebral bone marrow compartments in postmenopausal women. The PDFF of the paraspinal and vertebral bone marrow compartments and their correlations might potentially serve as biomarkers; however, future studies including more subjects are required to evaluate distinct clinical value and reliability. Future studies should also follow up our findings in patients suffering from metabolic and degenerative diseases to clarify how these correlations change in the course of such diseases

    Musical garden paths: Evidence for syntactic revision beyond the linguistic domain

    No full text
    Supplementary Materials for manuscript "Musical garden paths: Evidence for syntactic revision beyond the linguistic domain

    Musical syntactic structure improves memory for melody: evidence from the processing of ambiguous melodies

    No full text
    Memories of most stimuli in the auditory and other domains are prone to the disruptive interference of intervening events, whereby memory performance continuously declines as the number of intervening events increases. However, melodies in a familiar musical idiom are robust to such interference. We propose that representations of musical structure emerging from syntactic processing may provide partially redundant information that accounts for this robust encoding in memory. The present study employs tonally ambiguous melodies which afford two different syntactic interpretations in the tonal idiom. Crucially, since the melodies are ambiguous, memory across two presentations of the same melody cannot bias whether the interpretation in a second listening will be the same as the first, unless a representation of the first syntactic interpretation is also encoded in memory in addition to sensory information. The melodies were presented in a Memory Task, based on a continuous recognition paradigm, as well as in a Structure Task, where participants reported their syntactic interpretation of each melody following a disambiguating cue. Our results replicate memory-for-melody's robustness to interference, and further establish a predictive relationship between memory performance in the Memory Task and the robustness of syntactic interpretations against the bias introduced by the disambiguating cue in the Structure Task. As a consequence, our results support that a representation based on a disambiguating syntactic parse provides an additional, partially redundant encoding that feeds into memory alongside sensory information. Furthermore, establishing a relationship between memory performance and the formation of structural representations supports the relevance of syntactic relationships towards the experience of music

    Anatomical Variation of Age-Related Changes in Vertebral Bone Marrow Composition Using Chemical Shift Encoding-Based Water–Fat Magnetic Resonance Imaging

    No full text
    Assessment of vertebral bone marrow composition has been proposed as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. We investigated the anatomical variation of age-related changes of vertebral proton density fat fraction (PDFF) using chemical shift encoding-based water–fat magnetic resonance imaging (MRI). 156 healthy subjects were recruited (age range 20–29 years: 12/30 males/females; 30–39: 15/9; 40–49: 4/14; 50–59: 9/27; 60–69: 5/19; 70–79: 4/8). An eight-echo 3D spoiled gradient-echo sequence at 3T MRI was used for chemical shift-encoding based water–fat separation at the lumbar spine. Vertebral bodies of L1–L4 were manually segmented to extract PDFF values at each vertebral level. PDFF averaged over L1–L4 was significantly (p < 0.05) higher in males than females in the twenties (32.0 ± 8.0 vs. 27.2 ± 6.0%) and thirties (35.3 ± 6.7 vs. 27.3 ± 6.2%). With increasing age, females showed an accelerated fatty conversion of the bone marrow compared to men with no significant (p > 0.05) mean PDFF differences in the forties (32.4 ± 8.4 vs. 34.5 ± 6.8%) and fifties (42.0 ± 6.1 vs. 40.5 ± 9.7%). The accelerated conversion process continued resulting in greater mean PDFF values in females than males in the sixties (40.2 ± 6.9 vs. 48.8 ± 7.7%; p = 0.033) and seventies (43.9 ± 7.6 vs. 50.5 ± 8.2%; p = 0.208), though the latter did not reach statistical significance. Relative age-related PDFF change from the twenties to the seventies increased from 16.7% (L1) to 51.4% (L4) in males and 76.8% (L1) to 85.7% (L4) in females. An accelerated fatty conversion of bone marrow was observed in females with increasing age particularly evident after menopause. Relative age-related PDFF changes showed an anatomical variation with most pronounced changes at lower lumbar vertebral levels in both sexes

    Lumbar muscle and vertebral bodies segmentation of chemical shift encoding-based water-fat MRI: the reference database MyoSegmenTUM spine

    No full text
    Abstract Background Magnetic resonance imaging (MRI) is the modality of choice for diagnosing and monitoring muscular tissue pathologies and bone marrow alterations in the context of lower back pain, neuromuscular diseases and osteoporosis. Chemical shift encoding-based water-fat MRI allows for reliable determination of proton density fat fraction (PDFF) of the muscle and bone marrow. Prior to quantitative data extraction, segmentation of the examined structures is needed. Performed manually, the segmentation process is time consuming and therefore limiting the clinical applicability. Thus, the development of automated segmentation algorithms is an ongoing research focus. Construction and content This database provides ground truth data which may help to develop and test automatic lumbar muscle and vertebra segmentation algorithms. Lumbar muscle groups and vertebral bodies (L1 to L5) were manually segmented in chemical shift encoding-based water-fat MRI and made publically available in the database MyoSegmenTUM. The database consists of water, fat and PDFF images with corresponding segmentation masks for lumbar muscle groups (right/left erector spinae and psoas muscles, respectively) and lumbar vertebral bodies 1–5 of 54 healthy Caucasian subjects. The database is freely accessible online at https://osf.io/3j54b/?view_only=f5089274d4a449cda2fef1d2df0ecc56. Conclusion A development and testing of segmentation algorithms based on this database may allow the use of quantitative MRI in clinical routine

    Vertebral bone marrow fat fraction changes in postmenopausal women with breast cancer receiving combined aromatase inhibitor and bisphosphonate therapy

    No full text
    Background Quantification of vertebral bone marrow (VBM) water-fat composition has been proposed as advanced imaging biomarker for osteoporosis. Estrogen deficiency is the primary reason for trabecular bone loss in postmenopausal women. By reducing estrogen levels aromatase inhibitors (AI) as part of breast cancer therapy promote bone loss. Bisphosphonates (BP) are recommended to counteract this adverse drug effect. The purpose of our study was to quantify VBM proton density fat fraction (PDFF) changes at the lumbar spine using chemical shift encoding-based water-fat MRI (CSE-MRI) and bone mineral density (BMD) changes using dual energy X-ray absorptiometry (DXA) related to AI and BP treatment over a 12-month period. Methods Twenty seven postmenopausal breast cancer patients receiving AI therapy were recruited for this study. 22 subjects completed the 12-month study. 14 subjects received AI and BP (AI+BP), 8 subjects received AI without BP (AI-BP). All subjects underwent 3 T MRI. An eight-echo 3D spoiled gradient-echo sequence was used for CSE-based water-fat separation at the lumbar spine to generate PDFF maps. After manual segmentation of the vertebral bodies L1-L5 PDFF values were extracted for each vertebra and averaged for each subject. All subjects underwent DXA of the lumbar spine measuring the average BMD of L1-L4. Results Baseline age, PDFF and BMD showed no significant difference between the two groups (p > 0.05). There was a relative longitudinal increase in mean PDFF ( increment rel(PDFF)) in both groups (AI+BP: 5.93%; AI-BP: 3.11%) which was only significant (p = 0.006) in the AI+BP group. increment rel(PDFF) showed no significant difference between the two groups (p > 0.05). There was no significant longitudinal change in BMD (p > 0.05). Conclusions Over a 12-month period, VBM PDFF assessed with CSE-MRI significantly increased in subjects receiving AI and BP. The present results contradict previous results regarding the effect of only BP therapy on bone marrow fat content quantified by magnetic resonance spectroscopy and bone biopsies. Future longer-term follow-up studies are needed to further characterize the effects of combined AI and BP therapy
    corecore