9 research outputs found

    Depth-varying rupture properties of subduction zone megathrust faults

    Get PDF
    Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (M_w 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (M_w 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the deeper portion of the megathrusts whereas the largest fault displacements occurred at shallower depths but produced relatively little coherent short-period radiation. We represent these and other depth-varying seismic characteristics with four distinct failure domains extending along the megathrust from the trench to the downdip edge of the seismogenic zone. We designate the portion of the megathrust less than 15 km below the ocean surface as domain A, the region of tsunami earthquakes. From 15 to ∼35 km deep, large earthquake displacements occur over large-scale regions with only modest coherent short-period radiation, in what we designate as domain B. Rupture of smaller isolated megathrust patches dominate in domain C, which extends from ∼35 to 55 km deep. These isolated patches produce bursts of coherent short-period energy both in great ruptures and in smaller, sometimes repeating, moderate-size events. For the 2011 Tohoku earthquake, the sites of coherent teleseismic short-period radiation are close to areas where local strong ground motions originated. Domain D, found at depths of 30–45 km in subduction zones where relatively young oceanic lithosphere is being underthrust with shallow plate dip, is represented by the occurrence of low-frequency earthquakes, seismic tremor, and slow slip events in a transition zone to stable sliding or ductile flow below the seismogenic zone

    Effects of Kinematic Constraints on Teleseismic Finite-Source Rupture Inversions: Great Peruvian Earthquakes of 23 June 2001 and 15 August 2007

    Get PDF
    Two great underthrusting earthquakes that occurred along the coast of Peru in 2001 and 2007 involve spatiotemporal slip distributions that differ from the predominantly unilateral or bilateral rupture expansion of many great events. Commonly used finite-source rupture model parameterizations, with specified rupture velocity and/or short duration of slip at each grid point applied to the seismic data for these two events, lead to incorrect slip-distributions or inaccurate estimation of rupture velocities as a result of intrinsic kinematic constraints imposed on the model slip distributions. Guided by large aperture array back projections of teleseismic broadband P-wave signals that image slip locations without imposing a priori kinematic constraints on the rupture process, we exploit the availability of large global broadband body and surface wave data sets to consider the effects of varying the kinematic constraints in teleseismic finite-source waveform inversions. By allowing longer than usual rupture durations at each point on the fault using a flexible subfault source-time function parameterization, we find that the anomalous attributes of the 2001 and 2007 Peru earthquake ruptures are readily recognized and accounted for by compound rupture models. The great 23 June 2001 (M_w 8.4 8.4) earthquake involved an initial modest-size event that appears to have triggered a much larger secondary event about 120 km away that developed an overall slip distribution with significant slip located back along the megathrust in the vicinity of the initial rupture. The great 15 August 2007 (M_w 8.0 8.0) earthquake was also a composite event, with a modest size initial rupture followed by a 60-sec delayed larger rupture that initiated 50–60 km away and spread up-dip and bilaterally. When back projections indicate greater rupture complexity than captured in a simple slip-pulse-type rupture model, one should allow for possible long-subfault slip-duration or composite triggered sequences, and not overly constrain the earthquake slip distribution

    The 2009 Samoa–Tonga great earthquake triggered doublet

    Get PDF
    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone

    Frequency-dependent rupture process of the 2011 M_w 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models

    No full text
    The frequency-dependent rupture process of the 11 March 2011 M_w 9.0 off the Pacific coast of Tohoku Earthquake is examined using backprojection (BP) imaging with teleseismic short-period (~1 s) P waves, and finite faulting models (FFMs) of the seismic moment and slip distributions inverted from broadband (>3 s) teleseismic P waves, Rayleigh waves and regional continuous GPS ground motions. Robust features of the BPs are initial down-dip propagation of the short-period energy source with a slow rupture speed (~1 km/s), followed by faster (2-3 km/s) rupture that progresses southwestward beneath the Honshu coastline. The FFMs indicate initial slow down-dip expansion of the rupture followed by concentrated long-period radiation up-dip of the hypocenter, then southwestward expansion of the rupture. We explore whether these differences correspond to real variations in energy release over the fault plane or represent uncertainties in the respective approaches. Tests of the BP results involve (1) comparisons with backprojection of synthetic P waves generated for the FFMs, and (2) comparisons of backprojection locations for aftershocks with corresponding NEIC and JMA locations. The data indicate that the down-dip environment radiates higher relative levels of short-period radiation than the up-dip regime for this great earthquake, consistent with large-scale segmentation of the frictional properties of the megathrust

    The 2006-2007 Kuril Islands great earthquake sequence

    Get PDF
    The southwestern half of a ∼500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an M_S 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an M_W = 8.3 thrust event on 15 November 2006. This event ruptured ∼250 km along the seismic gap, just northeast of the great 1963 Kuril Island (M_w = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an M_W = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for the 2007 rupture zone. A large intraplate compressional event occurred on 15 January 2009 (M_w = 7.4) near 45 km depth, below the rupture zone of the 2007 event and in the vicinity of the 16 March 1963 compressional event. The fault geometry, rupture process and slip distributions of the two great events are estimated using very broadband teleseismic body and surface wave observations. The occurrence of the thrust event in the shallowest portion of the interplate fault in a region with a paucity of large thrust events at greater depths suggests that the event removed most of the slip deficit on this portion of the interplate fault. This great earthquake doublet demonstrates the heightened seismic hazard posed by induced intraplate faulting following large interplate thrust events. Future seismic failure of the remainder of the seismic gap appears viable, with the northeastern region that has also experienced compressional activity seaward of the megathrust warranting particular attention
    corecore