18 research outputs found

    Global burden of disease due to smokeless tobacco consumption in adults : analysis of data from 113 countries

    Get PDF
    BACKGROUND: Smokeless tobacco is consumed in most countries in the world. In view of its widespread use and increasing awareness of the associated risks, there is a need for a detailed assessment of its impact on health. We present the first global estimates of the burden of disease due to consumption of smokeless tobacco by adults. METHODS: The burden attributable to smokeless tobacco use in adults was estimated as a proportion of the disability-adjusted life-years (DALYs) lost and deaths reported in the 2010 Global Burden of Disease study. We used the comparative risk assessment method, which evaluates changes in population health that result from modifying a population's exposure to a risk factor. Population exposure was extrapolated from country-specific prevalence of smokeless tobacco consumption, and changes in population health were estimated using disease-specific risk estimates (relative risks/odds ratios) associated with it. Country-specific prevalence estimates were obtained through systematically searching for all relevant studies. Disease-specific risks were estimated by conducting systematic reviews and meta-analyses based on epidemiological studies. RESULTS: We found adult smokeless tobacco consumption figures for 115 countries and estimated burden of disease figures for 113 of these countries. Our estimates indicate that in 2010, smokeless tobacco use led to 1.7 million DALYs lost and 62,283 deaths due to cancers of mouth, pharynx and oesophagus and, based on data from the benchmark 52 country INTERHEART study, 4.7 million DALYs lost and 204,309 deaths from ischaemic heart disease. Over 85 % of this burden was in South-East Asia. CONCLUSIONS: Smokeless tobacco results in considerable, potentially preventable, global morbidity and mortality from cancer; estimates in relation to ischaemic heart disease need to be interpreted with more caution, but nonetheless suggest that the likely burden of disease is also substantial. The World Health Organization needs to consider incorporating regulation of smokeless tobacco into its Framework Convention for Tobacco Control

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    The past, present, and future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation.

    No full text
    Oscillations of the brain's local field potential (LFP) may coordinate neural ensembles and brain networks. It has been difficult to causally test this model or to translate its implications into treatments, because there are few reliable ways to alter LFP oscillations. We developed a closed-loop analog circuit to enhance brain oscillations by feeding them back into cortex through phase-locked transcranial electrical stimulation. We tested the system in a rhesus macaque with chronically implanted electrode arrays, targeting 8-15 Hz (alpha) oscillations. Ten seconds of stimulation increased alpha oscillatory power for up to 1 second after stimulation offset. In contrast, open-loop stimulation decreased alpha power. There was no effect in the neighboring 15-30 Hz (beta) LFP rhythm or on a neighboring array that did not participate in closed-loop feedback. Analog closed-loop neurostimulation might thus be a useful strategy for altering brain oscillations, both for basic research and the treatment of neuro-psychiatric disease

    Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation

    No full text
    Oscillations of the brain’s local field potential (LFP) may coordinate neural ensembles and brain networks. It has been difficult to causally test this model or to translate its implications into treatments, because there are few reliable ways to alter LFP oscillations. We developed a closed-loop analog circuit to enhance brain oscillations by feeding them back into cortex through phase-locked transcranial electrical stimulation. We tested the system in a rhesus macaque with chronically implanted electrode arrays, targeting 8–15 Hz (alpha) oscillations. Ten seconds of stimulation increased alpha oscillatory power for up to 1 second after stimulation offset. In contrast, open-loop stimulation decreased alpha power. There was no effect in the neighboring 15–30 Hz (beta) LFP rhythm or on a neighboring array that did not participate in closed-loop feedback. Analog closed-loop neurostimulation might thus be a useful strategy for altering brain oscillations, both for basic research and the treatment of neuropsychiatric disease.MIT-MHG Strategic Initiative (grant)Massachusetts Institute of Technology. Undergraduate Research Opportunities ProgramPaul E. Gray FellowshipBrain & Behavior Research Foundation (MH109722 -01)Dauten Family Foundation (Bipolar Fund at Harvard University)Massachusetts Institute of Technology. Picower Innovation FundMIT Bose Fellowship Progra

    Complement factor H polymorphisms, renal phenotypes and age-related macular degeneration: the Blue Mountains Eye Study

    No full text
    Complement factor H (CFH) is a key regulator of the alternative pathway of complement and its mutations have been associated with membranoproliferative glomerulonephritis type II, atypical hemolytic uremic syndrome and age-related macular degeneration (AMD), suggesting that alternative pathway dysregulation is a common pathogenetic feature of these ocular and renal conditions. In this study we tested the hypothesis that common CFH variants have a global role in renal function in the Australian population-based Blue Mountains Eye Study (BMES). We replicated the association of I62V with estimated glomerular filtration rate (GFR; P=0.017) and creatinine clearance (CRCL; P=0.015). The minor allele of I62V (G) was deleterious: adding one copy of the G allele decreased GFR/CRCL by ~0.98 ml min⁻¹ per 1.73 m² (95% confidence interval (CI): 0.97, 0.99). We also replicated the association of Y402H with AMD and provided an unbiased estimate of population attributable risk (PAR). The minor allele of Y402H (C) was deleterious: the odds ratio estimate of CC genotype compared to TT was 1.87 (95% CI: 1.44, 2.45). The PAR of the C allele was estimated as 0.22 (95% CI: 0.15, 0.28). In summary, in the BMES population we confirmed the association between I62V and renal function, as measured by the estimated GFR, plus the association of Y402H with both early- and late-stage AMD
    corecore