5,467 research outputs found

    Discrete breathers assist energy transfer to ac driven nonlinear chains

    Get PDF
    One-dimensional chain of pointwise particles harmonically coupled with nearest neighbors and placed in six-order polynomial on-site potentials is considered. Power of the energy source in the form of single ac driven particles is calculated numerically for different amplitudes AA and frequencies ω\omega within the linear phonon band. The results for the on-site potentials with hard and soft nonlinearity types are compared. For the hard-type nonlinearity, it is shown that when the driving frequency is close to (far from) the {\em upper} edge of the phonon band, the power of the energy source normalized to A2A^2 increases (decreases) with increasing AA. In contrast, for the soft-type nonlinearity, the normalized power of the energy source increases (decreases) with increasing AA when the driving frequency is close to (far from) the {\em lower} edge of the phonon band. Our further demonstrations indicate that, in the case of hard (soft) anharmonicity, the chain can support movable discrete breathers (DBs) with frequencies above (below) the phonon band. It is the energy source quasi-periodically emitting moving DBs in the regime with driving frequency close to the DBs frequency, that induces the increase of the power. Therefore, our results here support the mechanism that the moving DBs can assist energy transfer from the ac driven particle to the chain.Comment: 11 pages, 13 figure

    Vibrational Tamm states at the edges of graphene nanoribbons

    Full text link
    We study vibrational states localized at the edges of graphene nanoribbons. Such surface oscillations can be considered as a phonon analog of Tamm states well known in the electronic theory. We consider both armchair and zigzag graphene stripes and demonstrate that surface modes correspond to phonons localized at the edges of the graphene nanoribbon, and they can be classified as in-plane and out-of-plane modes. In addition, in armchair nanoribbons anharmonic edge modes can experience longitudinal localization in the form of self-localized nonlinear modes, or surface breather solitons.Comment: 10 pages, 10 figure

    Heat Transistor: Demonstration of Gate-Controlled Electron Refrigeration

    Get PDF
    We present experiments on a superconductor-normal metal electron refrigerator in a regime where single-electron charging effects are significant. The system functions as a heat transistor, i.e., the heat flux out from the normal metal island can be controlled with a gate voltage. A theoretical model developed within the framework of single-electron tunneling provides a full quantitative agreement with the experiment. This work serves as the first experimental observation of Coulombic control of heat transfer and, in particular, of refrigeration in a mesoscopic system.Comment: 4 pages, 3 color figure

    Heat conductivity of DNA double helix

    Full text link
    Thermal conductivity of isolated single molecule DNA fragments is of importance for nanotechnology, but has not yet been measured experimentally. Theoretical estimates based on simplified (1D) models predict anomalously high thermal conductivity. To investigate thermal properties of single molecule DNA we have developed a 3D coarse-grained (CG) model that retains the realism of the full all-atom description, but is significantly more efficient. Within the proposed model each nucleotide is represented by 6 particles or grains; the grains interact via effective potentials inferred from classical molecular dynamics (MD) trajectories based on a well-established all-atom potential function. Comparisons of 10 ns long MD trajectories between the CG and the corresponding all-atom model show similar root-mean-square deviations from the canonical B-form DNA, and similar structural fluctuations. At the same time, the CG model is 10 to 100 times faster depending on the length of the DNA fragment in the simulation. Analysis of dispersion curves derived from the CG model yields longitudinal sound velocity and torsional stiffness in close agreement with existing experiments. The computational efficiency of the CG model makes it possible to calculate thermal conductivity of a single DNA molecule not yet available experimentally. For a uniform (polyG-polyC) DNA, the estimated conductivity coefficient is 0.3 W/mK which is half the value of thermal conductivity for water. This result is in stark contrast with estimates of thermal conductivity for simplified, effectively 1D chains ("beads on a spring") that predict anomalous (infinite) thermal conductivity. Thus, full 3D character of DNA double-helix retained in the proposed model appears to be essential for describing its thermal properties at a single molecule level.Comment: 16 pages, 12 figure

    Semi-quantum approach to molecular dynamics simulation of thermal properties of low-dimensional nanostructures

    Full text link
    We present a detailed description of semi-quantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one can determine the temperature of such system from the measured power spectrum and temperature- and relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range T<500K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably less than that obtained within the description based on classical statistics of phonons.Comment: 19 pages, 15 figures, 2 table

    Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments

    Get PDF
    Slaughterhouse wastewater is considered a reservoir for antibiotic-resistant bacteria and antibiotic residues, which are not sufficiently removed by conventional treatment processes. This study focuses on the occurrence of ESKAPE bacteria (Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.), ESBL (extended-spectrum β-lactamase)-producing E. coli, antibiotic resistance genes (ARGs) and antibiotic residues in wastewater from a poultry slaughterhouse. The efficacy of conventional and advanced treatments (i.e., ozonation) of the in-house wastewater treatment plant regarding their removal was also evaluated. Target culturable bacteria were detected only in the influent and effluent after conventional treatment. High abundances of genes (e.g., blaTEM_{TEM}, blaCTXM15_{CTX-M-15}, blaCTXM32_{CTX-M-32}, blaOXA48_{OXA-48}, blaCMY_{CMY} and mcr-1) of up to 1.48 × 106^{6} copies/100 mL were detected in raw influent. All of them were already significantly reduced by 1–4.2 log units after conventional treatment. Following ozonation, mcr-1 and blaCTXM32_{CTX-M-32} were further reduced below the limit of detection. Antibiotic residues were detected in 55.6% (n = 10/18) of the wastewater samples. Despite the significant reduction through conventional and advanced treatments, effluents still exhibited high concentrations of some ARGs (e.g., sul1, ermB and blaOXA48_{OXA-48}), ranging from 1.75 × 102^{2} to 3.44 × 103^{3} copies/100 mL. Thus, a combination of oxidative, adsorptive and membrane-based technologies should be considered

    Signatures of Classical Diffusion in Quantum Fluctuations of 2D Chaotic Systems

    Full text link
    We consider a two-dimensional (2D) generalization of the standard kicked-rotor (KR) and show that it is an excellent model for the study of 2D quantum systems with underlying diffusive classical dynamics. First we analyze the distribution of wavefunction intensities and compare them with the predictions derived in the framework of diffusive {\it disordered} samples. Next, we turn the closed system into an open one by constructing a scattering matrix. The distribution of the resonance widths P(Γ){\cal P}(\Gamma) and Wigner delay times P(τW){\cal P}(\tau_W) are investigated. The forms of these distributions are obtained for different symmetry classes and the traces of classical diffusive dynamics are identified. Our theoretical arguments are supported by extensive numerical calculations.Comment: 20 pages; 12 figure

    Results of multidisciplinary survey in the Laptev Sea in August-September, 2015

    Get PDF
    Data on oceanographic conditions and species composition of plankton, benthic and demersal fish and invertebrates are presented, obtained in the complex survey over the external shelf of the Laptev Sea in August-September 2015. The zooplankton abundance was low, with only local increases up to 400 mg/m3. Species diversity of fish and nekton invertebrates in the bottom trawl catches was low, too: 26 fish species and 2 species of cephalopods. Mean biomass of fish was estimated as 4.3 t/km2 (in total 132. 103 t within the surveyed area of 30,500 km2). All fish species were distributed sparse. Arctic cod was the most abundant and occurred over the whole surveyed area, with large-sized fish dominating at the bottom and medium-sized (9-15 cm) fish - in the pelagic layer, other commercial species were greenland halibut and deepwater redfish caught on the continental slope. Bottom invertebrates in trawl catches were presented by 6 species of shrimp and 12 taxonomic groups of different rank, with predominance of starfish, brittle stars and sponges; gastropods were represented by 11 species, with Neptunea heros dominating by mass (42 %). Macrobenthos in samples of the bottom sampler was presented by 20 taxonomic groups, with predominance of polychaetes, bivalves and sipunculoids

    Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications

    Get PDF
    This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
    corecore