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Discrete breathers assist energy transfer to ac-driven nonlinear chains
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A one-dimensional chain of pointwise particles harmonically coupled with nearest neighbors and placed in
sixth-order polynomial on-site potentials is considered. The power of the energy source in the form of single ac
driven particle is calculated numerically for different amplitudes A and frequencies ω within the linear phonon
band. The results for the on-site potentials with hard and soft anharmonicity types are compared. For the hard-type
anharmonicity, it is shown that when the driving frequency is close to (far from) the upper edge of the phonon band,
the power of the energy source normalized to A2 increases (decreases) with increasing A. In contrast, for the soft-
type anharmonicity, the normalized power of the energy source increases (decreases) with increasing A when the
driving frequency is close to (far from) the lower edge of the phonon band. Our further demonstrations indicate that
in the case of hard (soft) anharmonicity, the chain can support movable discrete breathers (DBs) with frequencies
above (below) the phonon band. It is the energy source quasiperiodically emitting moving DBs in the regime with
driving frequency close to the DB frequency that induces the increase of the power. Therefore, our results here
support the mechanism that the moving DBs can assist energy transfer from the ac driven particle to the chain.

DOI: 10.1103/PhysRevE.97.022217

I. INTRODUCTION

For many physical systems, a common basic problem is
the response of a nonlinear medium to periodic excitations at
the boundary or inside a local region in the bulk [1–11]. The
energy can flow or not flow from the energy source into the
medium, depending on the medium, the frequency, and the
amplitude of the excitations. A linear medium absorbs energy
only if the frequency of the source is within the spectrum of
small-amplitude running waves (phonons) supported by the
medium, while for a nonlinear medium, the energy source can
transmit energy into the medium even at driving frequencies
outside the small-amplitude phonons spectrum. According to
the so-called supratransmission effect [2,12–14], energy, in this
case, is transported by the moving discrete breathers (DBs)
[15–19] when the driving amplitude is above a threshold value.
But some new phenomena beyond the supratransmission effect
can also been observed; e.g., for excitation frequencies outside
the phonon spectrum, energy can flow into a nonlinear discrete
system even at small driving amplitudes [10]; when the system
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is in contact with heat baths [7], the amplitude threshold for
this nonlinear supratransmission effect will be absent.

Recently, interest in the energy transport by linear and
nonlinear phonons and by DBs has increased enormously,
due to the emerging new field of phononics [20,21] and the
recent theoretical and experimental progress on anomalous
heat transport in low-dimensional systems [22–31], on thermal
diodes [32–36], on thermal transistors [37,38], and on various
thermal logic gates [39–41]. On the one hand, the relevant
theoretical studies showed that DBs [42,43] and solitons [44]
can affect thermal conductivity in nonlinear chains. Randomly
distributed defects [34,45,46] can also influence heat transport.
In particular, the study [47] revealed that heat transport is
normal (obeying the Fourier law) in the chains with the
interatomic potentials allowing breaking of interatomic bonds.
The work [48] suggested the properties of phonon localization
and thermal rectification in the chains with strain gradient.

On the other hand, external periodic driving gives new ways
in manipulating energy flux in nonlinear lattices. Heat can flow
from the low-temperature to the high-temperature heat bath
in nonlinear lattices when the temperature of a heat bath is
time-periodically modulated [5] or when a driving force with
frequency in a certain range is applied at the lattice boundary
[7]. An experimental setup for low-frequency phonon cooling
with external periodic driving in a diamond nanoresonator has
been proposed in [49,50].

In fact, more effort has been devoted to relating the above
two aspects. With the time-dependent frequency driving of
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FIG. 1. (a) Schematic plot of the 1D chain of harmonically
coupled pointwise particles in the anharmonic on-site potential. (b)
The on-site potential as a function of ξ for hard-type (red line) and
soft-type (blue line) potentials. The stars show the inflection points in
the soft-type case.

a small-amplitude traveling wave, excitation of solitons in
the Korteweg–de Vries equation has been analyzed [12]. The
possibility of optical excitation of DBs in crystals has also
been demonstrated [1]. Excitation of standing DBs with time-
modulated vibration amplitude in a strained graphene has been
observed [10].

All of the above studies indicate that it is very interesting
to study the basic mechanism for energy transfer in nonlinear
lattices by external ac driving, and to demonstrate the relevant
roles of nonlinear excitations, such as solitons and DBs, within
this process. However, so far, the excitation of the latter case,
i.e., the DBs, has only been investigated for driving frequencies
outside the phonon band [2,3,10,12–14]. In this work we
therefore study energy transfer in 1D nonlinear chains in the
case when the driving frequency is within the phonon band.

The rest of this work is composed as follows. In Sec. II the
focused 1D nonlinear chains are described, the linear phonon
spectrum of these chains is discussed, and the details of our in-
vestigation scheme are briefly presented. In Sec. III the energy
transfer with a harmonically driven particle in the middle of a
linear chain is first analytically demonstrated. Then, numerical
results for the chains with hard- and soft-type anharmonicities
are given. In Sec. IV the properties of standing and moving
DBs in the cases of hard- and soft-type anharmonicities are
discussed to explain the findings of Sec. III. Finally, Sec. V
draws our conclusions.

II. MODELS

We consider the 1D chains [see Fig. 1(a)] of pointwise (but
with mass m) particles whose Hamiltonian is defined by

H =
∑

n

[
mu̇2

n

2
+ V (un+1 − un) + U (un)

]
, (1)

where un is the displacement of the nth particle from its
equilibrium position, u̇n is its velocity (the overdot means

derivative with respect to time), and

V (ξ ) = Kξ 2

2
(2)

is the harmonic potential with stiffness constant K describing
the interaction of each particle with its nearest neighbors. For
the on-site potential we take

U (ξ ) = kξ 2 + αξ 4 + βξ 6, (3)

where k is the coefficient in front of the harmonic term, while
α and β are the coefficients that define the contributions from
the quartic and sixth-order terms, respectively.

Without the loss of generality we set m = 1, K = 1. Our
attention then is focused on the on-site potential, where we
take k = 1/2 and β = 1/720. For α, we consider the following
two cases, i.e., α = 1/24 for the hard-type anharmonicity and
α = −1/24 for the soft-type (only cases for not very large
ξ will be taken into account). Thus, in both cases we have
unbounded on-site potential, as demonstrated in Fig. 1(b). In
fact, for very large ξ , both potentials are of hard type since
the leading term is proportional to ξ 6. As shown in Fig. 1(b),
the soft-type potential has four inflection points at ξ ≈ ±1.59
and ξ ≈ ±3.07, which are shown by stars. Therefore, in this
study we do not consider excitations with the displacements of
particles exceeding the first inflection point to ensure that the
anharmonicity of the on-site potential is really of soft type. For
displacements exceeding the second inflection point the on-site
potential will become effectively harder due to the effect of the
sixth-order nonlinear term.

From Eqs. (1)–(3) the following equations of motion can be
derived:

mün = K(un−1 − 2un + un+1) − 2kun − 4αu3
n − 6βu5

n.

(4)

As to the case of small-amplitude vibrations, the fourth- and
sixth-order nonlinear terms can be neglected, and thus

mün = K(un−1 − 2un + un+1) − 2kun. (5)

The solutions of the above equation are the linear combinations
of normal modes un ∼ exp[i(qn − ωqt)] with wave number q

and frequency ωq following the dispersion relation:

ω2
q = 2

m
[k − K(cos q − 1)]. (6)

In Fig. 2 the dispersion relation (6) is shown within the
first Brillouin zone. It suggests that the systems support the
small-amplitude running waves (phonons) with frequencies
ranging from ωmin = 1 to ωmax = √

5 ≈ 2.236. The phonon
group velocity defined by vg = dωq/dq vanishes for q → 0
and q → ±π , while the phonon with fastest velocity is the
one having frequencies in the middle of the phonon band. This
fact will be used in the discussion of the power of the energy
source.

In simulations we usually consider chains consisting of
N = 4000 particles. This size is long enough to avoid the effect
of boundaries on energy transfer from the driven particle within
the simulation run of tmax = 2000 time units. The periodic
boundary condition is used, i.e., to set un = un+N . Equations
of motion are integrated with the help of the Störmer method
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FIG. 2. Dispersion relation for small-amplitude waves (phonons)
supported by the considered chain of particles. The phonon band
ranges from ωmin = 1 to ωmax = √

5 ≈ 2.236.

of order six with the time step τ = 0.005. Further decrease of
the time step did not affect the final simulation results.

III. ENERGY TRANSFER TO AC DRIVEN CHAIN

Initially, in the middle of the chain, one particle is forced to
move according to the harmonic law

uN/2 = A sin(ωt), T = 2π

ω
, (7)

with the driving parameters, amplitude A, frequency ω, and
period T . All other particles are set with zero displacements
and velocities. The driven particle can be regarded as the energy
source. The chain can accept or not accept the energy from the
source depending on A and ω.

The driving (7) is applied during the whole simulation run
up to tmax = 2000. Such choice of tmax ensures that the pertur-
bation from the energy source does not reach the boundaries
of the chain for any driving parameters. At the end of the
simulation run, we then calculate the total (kinetic+potential)
energy E of the chain, and finally find the averaged power of
the energy source over the whole simulation runs as follows:

P = E(tmax)

tmax
. (8)

Following this way, the power of the energy source is
actually a function of time. To obtain a detailed characteristic
of the source power, in practice, we choose to calculate the total
energy of the chain Ej at times tj = jT with j = 0,1,2, . . . ,
and T is the driving period. With this information, we then
calculate the power averaged over each driving period by

pj = Ej+1 − Ej

T
. (9)

A. Exact solution for driven harmonic chain

Before starting to discuss the nonlinear cases, usually it is
very instructive to analyze the behavior of a linear system first
[51–55]. In this subsection, we derive an exact expression for
the total energy E of the linear system (5) subjected to external

excitation (7) under zero initial conditions. This allows us to
find both the power P defined by Eq. (8) and the power for
each driving period defined in Eq. (9).

To do this we introduce a new variable

wn = un − A sin(ωt) (10)

for convenience. This new variable wn then satisfies the
following equations:

mẅn = K(wn+1 − 2wn + wn−1) − 2kwn

+A(mω2 − 2k) sin(ωt), wN
2

= w 3N
2

= 0, (11)

with initial conditions

wn = 0, ẇn = −Aω, n = N

2
+ 1, . . . ,

3N

2
− 1.

(12)

Normal modes for Eqs. (11) are sin πj (2n−N)
2N

. The corre-
sponding eigenfrequencies are calculated as

�2
j = ω2

min + 2K

m

(
1 − cos

πj

N

)
, ω2

min = 2k

m
. (13)

Therefore, the exact solution of Eqs. (11) can be represented as
a linear combination of all normal modes. Including the initial
conditions yields

wn = A

N

N−1∑
j=1

Bj

[(
ω2 − ω2

min

)
sin(ωt)

− ω

�j

(
�2

j − ω2
min

)
sin(�j t)

]
sin

πj (2n − N )

2N
,

Bj = [1 − (−1)j ]cot πj

2N(
�2

j − ω2
) . (14)

To summarize, formula (14) is the exact solution of Eqs. (11)
under initial conditions (12).

Now let us turn to the total energy of the linear system,
which is calculated by using the law of energy balance:

E(t) = Aω

∫ t

0
f (τ ) cos(ωτ )dτ, (15)

where f is the force driving the particle number N/2. Accord-
ing to Newton’s second law, force f is equal to the difference
between acceleration of this particle and forces induced by the
neighboring particles and the on-site potential. Then

f (t) = A(2k + 2K − mω2) sin(ωt) − 2KuN
2 +1. (16)

Here the identity uN
2 +1 = uN

2 −1 is used. This identity follows
from symmetry of the problem with respect to particle number
N/2.

Next, substituting Eqs. (14) and (16) into Eq. (15) and
performing integration yields

E(t)

A2
= 1

2
(2k − mω2) sin2(ωt) − K

N

N−1∑
j=1

Bjgj sin
πj

N
,

gj = (
ω2 − ω2

min

)
sin2(ωt) − 2ω2

(
�2

j − ω2
min

)
�j

(
�2

j − ω2
) hj , (17)

hj = �j − ω sin(�j t) sin(ωt) − �j cos(�j t) cos(ωt),
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FIG. 3. Power P of the energy source, normalized by A2, as a
function of driving frequency for two driving amplitudes, A = 0.005
and 0.6. The exact result for the linear chain is shown by the thick
dashed line. Vertical dashed lines show the edges of the phonon band
with ωmin = 1 and ωmax = √

5.

which is an exact expression for the energy of the linear chain
at any moment in time.

Using Eq. (17), one then can calculate both the averaged
power of the energy source over time from t = 0 to t = tmax

and the power for each driving period, based on Eq. (8) and
Eq. (9), respectively. For large N , the sums in formula (17) can
be replaced by integrals. Then applying asymptotic methods,
we show that at large times the expression for E has the simple
form

E(t)

A2
≈ 1

2
mω2cg(ω)t, (18)

where cg = 1
ω

√
(ω2 − ω2

min)(ω2
max − ω2) is the group velocity.

Formula (18) has very transparent physical meaning, since
mA2ω2/2 is the energy density of phonons with amplitude
A and frequency ω, while cgt is the distance traveled by the
phonons at time t . Thus, the power of the energy source at large
times is just a product of phonon energy density and phonon
group velocity.

B. Numerical results for driven nonlinear chain

In Figs. 3 and 4 the power P of the energy source,
normalized by A2, is plotted as a function of the driving
frequency for two driving amplitudes, A = 0.005 and A =
0.6, for the hard-type (α = 1/24) and the soft-type (α =
−1/24) anharmonicities, respectively. Driving frequencies are
set within the phonon band and marked by the vertical dashed
lines. Here, recall that, as mentioned, P is the averaged power
over the whole numerical run of tmax = 2000. For comparison,
the derived exact solution [one can substitute Eq. (17) into
Eq. (8)] and some numerical results for several small driving
amplitudes are plotted together. For small A = 0.005, it can be
clearly identified that the numerical results are coincident very
well with the prediction. In this case, the normalized power

FIG. 4. The same result as that shown in Fig. 3 but for the case of
soft anharmonicity.

of the energy source is zero at the phonon band boundaries
and it has a maximum value P/A2 = 1.804 at ω = 1.913.
This can be understood by the fact that the power at large
times is proportional to the phonon group velocity, according
to Eq. (18), which is zero at the edges of the phonon band and
is maximal in the middle of the band.

For the higher driving amplitude A = 0.6, the nonlinearity
comes into play. So, the results deviate from the prediction of
the linear theory. Specifically, for the model with hard-type
anharmonicity, p/A2 appears to increase near the upper edge
of the phonon band and to decrease near the lower edge, while
in the case of soft-type anharmonicity an opposite tendency is
observed.

In order to explain this observation, we focus on the driving
frequencies within the phonon band but close to its edges.
To get deeper insight into the effect of anharmonicity on
energy transfer to the chain from the energy source, we plot
pj defined by Eq. (9) as a function of j for a series of driving
amplitudes and two driving frequencies ω = ωmin + 0.01 and
ω = ωmax − 0.01. The results for the hard-type and soft-type
anharmonicities are presented in Figs. 5 and 6, respectively,
where panel (a) gives the result of driving frequency close to
the lower edge of the phonon band, while panel (b) provides
that close to the upper edge of the band. The prediction from
the linear chain is plotted with the thick dashed line for a
comparison. As can be seen, for A = 0.005, both the prediction
and the simulation results are overlapped as well.

In a detailed comparison of Fig. 5 and Fig. 6, one can easily
find that both Fig. 5(a) and Fig. 6(b) show the decrease of the
normalized source power with increasing driving amplitude,
while a qualitatively different picture is seen in Fig. 5(b) and
Fig. 6(a). The former cases are those in which in the lower
(upper) edge of the phonon spectrum for hard- (soft-) type
anharmonicity, after a transient period, pj/A

2 decreases down
to a constant value with the increase of A. The latter cases
then correspond to those in which, in the upper (lower) edge
of the phonon spectrum for hard- (soft-) type anharmonicity,
generally pj/A

2 shows not a decrease but an increase with
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FIG. 5. Hard-type anharmonicity: Power of the energy source
pj defined by Eq. (9) and normalized by A2 as a function of the
driving period number, j = tj /T , for different driving amplitudes A,
as indicated for each curve. Driving frequency is inside the phonon
band and it is close to (a) the lower edge, ω = ωmin + 0.01, and (b)
the upper edge, ω = ωmax − 0.01.

FIG. 6. The same as Fig. 5, but for the case of soft-type
anharmonicity.

FIG. 7. Contour plots showing the space-time evolution of nor-
malized energy of the particles, en/A

2. More intense colors corre-
spond to higher energies, according to the color bar shown at the right
of each panel. Particle located at n = 2000 is driven. (a), (a′), (b), (b′)
Hard-type anharmonicity. (c), (c′), (d), (d′) Soft-type anharmonicity.
(a), (a′), (c), (c′) Driving frequency is close to the lower edge of the
phonon band. (b), (b′), (d), (d′) Driving frequency is close to the upper
edge of the phonon band. Left (right) panels correspond to the driving
amplitude A = 0.2 (A = 0.6).

A, and more importantly, at large A and a long time, pj/A
2

does not approach a constant value but shows quasiperiodic
oscillation behaviors.

The former observations [Fig. 5(a) and Fig. 6(b)] are
understandable and trivial, since the driving frequency is close
to the edge of the phonon band, while the latter results are
interesting, and suggest new underlying mechanisms. Here, we
argue that the increase of the power together with quasiperiodic
oscillations shown in Fig. 5(b) and Fig. 6(a) at large driving
amplitudes is related to excitation of moving DBs, since the
driving frequency is close to the DB frequency, while in the
cases of Fig. 5(a) and Fig. 6(b), the driving frequency is
far from the DB frequency and DBs are not excited, so a
qualitatively different picture can be seen. We will present
analytic demonstration for the existence of mobile DBs in
Sec. IV. Before doing that we first provide more details about
the transfer of the energy in the chain to further support the
arguments.

The energy per particle is usually defined by

en = mu̇2
i

2
+ 1

2
V (un − un−1) + 1

2
V (un+1 − un) + U (un).

(19)

In Fig. 7 a contour plot of the normalized (normalized by A2)
total energy of all particles (at n = 2000, the location of the
source), i.e., en/A

2, during the simulation run up to t = 2000
is presented. Here, more intense colors are used to correspond

022217-5



DANIAL SAADATMAND et al. PHYSICAL REVIEW E 97, 022217 (2018)

FIG. 8. Normalized energy of the particles at the end of the
numerical run at t = tmax = 2000. Particle n = 2000 is driven. Half
of the picture is shown due to the mirror symmetry with respect to
the driven site. (a), (b) Hard-type anharmonicity. (c), (d) Soft-type
anharmonicity. (a), (c) Driving frequency is close to the lower edge
of the phonon band. (b), (d) Driving frequency is close to the upper
edge of the phonon band. Blue solid lines show the results of relatively
small driving amplitude A = 0.2, while black dashed lines correspond
to the result of A = 0.6, when nonlinearity comes into play. Trains
of DBs moving away from the energy source can be seen in (b), (c),
when the driving frequency is close to the DB frequency and the
driving amplitude is sufficiently large.

to the results of higher energy, according to the color bar.
The results of the hard-type anharmonicity are presented in
panels (a), (a′), (b), (b′), and the counterparts of soft-type
anharmonicity are in (c), (c′), (d), (d′). In (a), (a′), (c), (c′)
the driving frequency is close to the lower edge of the phonon
band, while in (b), (b′), (d), (d′) it is close to the upper edge of
the phonon band. Left (right) panels correspond to the driving
amplitude A = 0.2 (A = 0.6).

Indeed, as expected, Fig. 7 shows that the energy flows of
panels (a), (a′), (d), (d′) are qualitatively different from those
in panels (b), (b′), (c), (c′). This is basically consistent with our
above conjecture. In panels (a), (a′), (d), (d′), the normalized
energy is better accepted by the chain at smaller driving
amplitudes, while in panels (b), (b′), (c), (c′) the opposite result
is true. In particular, in panels (a), (a′), (d), (d′) the energy
radiated by the source is distributed smoothly, while in panels
(b), (b′), (c), (c′) the energy distribution is highly nonuniform,
which is better seen for larger driving amplitude in panels (b′)
and (c′).

We thus present the distribution of en/A
2 in a more quan-

titative way. Toward this aim, we show the en/A
2 simulation

run of t = tmax = 2000 and plot it in Fig. 8 with panels (a) and
(b) hard-type anharmonicity, panels (c) and (d) for soft-type
anharmonicity. Recall again that the driven particle is located

FIG. 9. Vibration amplitude of n = 2050 particle as a function of
time (driven particle is n = 2000). (a), (b) Hard-type anharmonicity.
(c), (d) Soft-type anharmonicity. (a), (c) Driving frequency is close
to the lower edge of the phonon band. (b), (d) Driving frequency is
close to the upper edge of the phonon band. Blue solid (black dashed)
lines show the results for A = 0.2 (A = 0.6).

in the middle of the chain (n = 2000), and thus only half
of the picture is shown since the energy from the source is
emitted symmetrically in both directions, as was evident in
Fig. 7. The same as above, in panels (a) and (c) the driving
frequency is ω = ωmin + 0.01, while in panels (b) and (d) it
is ω = ωmax − 0.01. In each case the results are compared for
the relatively small driving amplitude A = 0.2 (blue solid line)
and sufficiently large driving amplitude A = 0.6 (black dashed
line), where the effect of nonlinearity becomes noticeable (see
also Figs. 5 and 6).

For the driving frequency far from the DB frequency [see
Figs. 8(a) and 8(d)] en/A

2 is larger for smaller A, in line with
the results shown in Fig. 5(a) and Fig. 6(b). The opposite fact
is true for the driving frequency close to the DB frequency [see
Figs. 8(b) and 8(c)], as was already concluded in Fig. 5(b) and
Fig. 6(a).

More interestingly, in the case of the driving frequency close
to the DB frequency, we almost recover the quasioscillation
behavior shown in Fig. 5(b) and Fig. 6(a). In this case,
the energy distribution is in the form of a series of peaks
corresponding very similarly to a train of moving DBs emitted
by the energy source. Regarding the difference between the
results of Figs. 8(b) and 8(c), we point out that this may because
DBs emitted at driving amplitude A = 0.6 propagate faster
than the small-amplitude waves emitted at A = 0.2.

To gain clearer evidence, we further analyze the vibration
amplitude of one particle located at n = 2050, which is 50 sites
away from the energy source. The vibration amplitude, a2050,
as a function of time is presented in Fig. 9, where the relevant
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FIG. 10. The associated frequencies of the vibrations shown in
Fig. 9 as a function of the driving amplitude A. Here we use the open
circles to represent the estimated frequencies within the phonon band,
while adopting the crosses and dots to denote those that can appear
outside the phonon band. Therefore, in (a) [(b)] the open circles (the
crosses and dots) are for the soft- (hard-) type anharmonicity.

parameters are the same as those in Fig. 8. From Fig. 9, for
small driving amplitude, e.g., A = 0.2, the results are similar
regardless of which types of anharmonicity and what values
of the driving frequency. In all four cases, as time grows, a2050

approaches the driving amplitude. This can be understood by
the picture that, at small driving amplitudes, the source emits
phonons with the amplitude equal to the driving amplitude,
whereas the results for the larger driving amplitude, e.g., A =
0.6, are sensitive to the parameters. When the driving frequency
is far from DB frequencies [Figs. 9(a) and 9(d)], a2050 increases
with time monotonically, while for the driving frequency close
to the DB frequencies, it is oscillated in time since energies are
carried by DBs passing quasiperiodically through this particle.
DB amplitudes in both cases are slightly above 1, which are
obviously larger than the driving amplitude.

In view of Figs. 9(b) and 9(c) and to further verify that
these oscillations do correspond to moving DBs, we finally
calculate their associated frequencies. To do this we first
record u2050(t) within t = 500 and t = 1300; then by a discrete
Fourier transform we derive the frequencies f . Usually, one
can find two frequencies of f1 and f2, corresponding to the
main and second maximum from the spectrum, respectively
(if the second maximum is presented). Figure 10 shows the
frequencies as a function of the driving amplitude A. Here
we use the horizontal dashed lines to denote the edges of
the phonon band. Figure 10(a) is used to demonstrate our
conjecture in Figs. 9(b) and 9(d), where for the soft-type
anharmonicity (open circles), its frequencies have only single
maximum f1 within the phonon band, whereas for the hard-
type anharmonicity (crosses and dots), both f1 (crosses) and
f2 (dots) can be observed. In particular, in the latter case, for
A < 0.3, one only sees the frequencies within the phonon band,
while for A � 0.3, the frequencies above the phonon band can
be clearly identified. In Fig. 10(b), a similar behavior can be
seen, but now we focus on the soft-type anharmonicity case
and with the frequencies below the linear phonon band [see
the crosses and dots in Fig. 10(b)].

From Fig. 10 now we confirm that, by driving with fre-
quency within the phonon band, one can produce vibrations
of additional frequencies outside the band. Clearly, such fre-
quency regimes just correspond to the DB frequencies outside
the linear phonon band, for the hard- and soft-type anharmonic-
ities, respectively. This evidence thus further supports that the

oscillations shown in Figs. 9(b) and 9(c) just correspond to
moving DBs.

IV. DISCRETE BREATHERS

We now provide information on DBs. We will first numeri-
cally explore the properties of standing DBs and then consider
their mobility. Finally, an analytical result of moving DBs is
presented for comparison.

A. Standing discrete breathers

To excite a standing DB, the following ansatz was used for
the case of hard-type anharmonicity,

un(0) = (−1)nADB

cosh[θ (n − N/2)]
, u̇n(0) = 0, (20)

while for the soft-type anharmonicity, we adopt

un(0) = ADB

cosh[θ (n − N/2)]
, u̇n(0) = 0. (21)

Here ADB and θ are the DB amplitude and inverse width,
respectively. DB is centered on the middle particle of the
chain, n = N/2. We stress that Eqs. (20) and (21) are not the
exact solutions to Eq. (4), but they produce fairly good initial
conditions for DBs. For the chosen ADB, we find θ by using
the trial and error method [56] minimizing the oscillations
of the DB amplitude in simulations. After θ is determined,
we then calculate DB frequency, ωDB, and its total (kinetic
plus potential) energy, EDB. These results are presented in
Table I for a set of DB amplitudes for both hard- and soft-type
anharmonicities.

Table I tells us that, with the increase of DB amplitude, the
degree of its spatial localization, characterized by θ , increases.
The same is true for DB energy, while DB frequency increases
(decreases) with amplitude being above (below) the phonon
band for hard-type (soft-type) anharmonicity.

Based on Table I, Fig. 11 further plots several typical
DB profiles for hard-type [see Fig. 11(a)] and soft-type [see
Fig. 11(b)] anharmonicities. Here, we only plot the DBs at the
oscillation phase when particles have largest displacements.
A comparison of the results of ADB = 0.5 and ADB = 1.5
indicates that DBs with larger amplitude are more localized. In
addition to this common feature, the DB profiles for both types
of anharmonicities are different; i.e., in the case of hard-type
(soft-type) anharmonicity the DB has a staggered (smooth)
shape.

B. Moving discrete breathers

Moving DBs were excited by using the following physically
motivated ansatz [56]. For hard-type anharmonicity, it has the
form

un(t) = (−1)nADB cos[ωDBt + δ(n − x0)]

cosh[θ (n − x0)]
, (22)

while for soft-type anharmonicity it reads

un(t) = ADB cos[ωDBt − δ(n − x0)]

cosh[θ (n − x0)]
. (23)
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TABLE I. Parameters of standing DB.

Hard-type anharmonicity
ADB θ ωDB EDB

0.5 0.126 2.240 9.954
0.75 0.190 2.244 14.84
1.0 0.257 2.250 19.59
1.25 0.326 2.259 24.27
1.5 0.398 2.270 28.72
1.75 0.475 2.283 32.95
2.0 0.560 2.299 36.75
2.25 0.658 2.318 39.87
2.5 0.783 2.339 41.64
2.75 0.933 2.369 42.59
3.0 1.097 2.403 43.63

Soft-type anharmonicity

ADB θ ωDB EDB

0.5 0.125 0.992 1.991
0.75 0.186 0.983 2.969
1.0 0.246 0.969 3.928
1.25 0.305 0.952 4.861
1.5 0.361 0.932 5.770
1.75 0.414 0.908 6.656
2.0 0.464 0.882 7.513
2.25 0.511 0.854 8.334
2.5 0.551 0.824 9.170
2.75 0.585 0.793 10.01
3.0 0.613 0.764 10.87

Here, δ is a free parameter which characterizes DB velocity,
vDB, in the case when it is mobile. For example, for δ = 0 the
DB velocity is zero, and both Eqs. (22) and (23) essentially
reduce to the original ones, Eqs. (20) and (21), respectively.
The change of the sign of δ results in the change of the sign of
the DB velocity.

FIG. 11. Standing DB profiles for two different amplitudes
ADB = 0.5 and ADB = 1.5 for the case of (a) hard-type and (b)
soft-type anharmonicities.

FIG. 12. Moving DB profile in the case of hard-type anharmonic-
ity. Parameters of the ansatz Eq. (22) are ADB = 1.5, θ = 0.398,
ωDB = 2.270, x0 = 2000, δ = 0.3. DB velocity vDB = 0.1303. Time
is indicated in each panel.

It should be pointed out that Eqs. (22) and (23) do not de-
scribe exact moving DBs, but they give very good approximate
solutions for moving DBs in the case of not very high DB
amplitude.

We use Eqs. (22) and (23) with different values of δ

for setting the initial conditions taking other DB parameters
from Table I. Two typical examples of moving DB evolution
are shown in Fig. 12 and Fig. 13 for the hard-type and
soft-type anharmonicities, respectively. Here, we choose δ =
0.3, ADB = 1.5, x0 = 2000. Other parameters are taken from
Table I. The measured DB velocity is vDB = 0.1303 in Fig. 12
and vDB = 0.2838 in Fig. 13. For these chosen parameters,
DBs propagate at constant velocities practically radiating no
energy.

The velocity of the DB is measured and presented as a
function of δ in Figs. 14(a) and 14(b) for the chains with
hard-type and soft-type anharmonicity, respectively. Different
lines show the results for different DB amplitudes, ADB, as
indicated in the legends.

In fact, in our calculations, we have examined DB velocities
for different A in detail. The relevant results are presented in
Fig. 14. It can be seen that for hard-type anharmonicity [see
Fig. 14(a)], DBs with relatively small amplitudes (ADB < 2)
have velocities nearly proportional to δ within the range of
|δ| � 0.3 considered here. Such DBs are highly mobile. We
have checked that they move through the entire computa-
tional cell of 4000 particles with nearly constant velocity and
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FIG. 13. Moving DB profile in the case of soft-type anharmonic-
ity. Parameters of the ansatz Eq. (23) are ADB = 1.5, θ = 0.361,
ωDB = 0.932, x0 = 2000, δ = 0.3. DB velocity vDB = 0.2838. Time
is indicated in each panel.

practically radiating no energy. However, for the cases of
ADB = 2.5, the increase of DB velocity with δ is slower than
that for smaller amplitudes. While propagating, it radiates
small-amplitude waves and its velocity gradually decreases.

FIG. 14. Velocity vDB of DBs as a function of δ for (a) hard-type
and (b) soft-type anharmonicities. DB amplitude is indicated in the
legends. Other DB parameters are taken from Table I.

For this reason, we measured the DB velocity at t = 300.
Finally, DBs with even higher amplitudes (ADB � 3) are
trapped by the lattice and no longer move for any value of
δ. On the other hand, as evidenced by Fig. 14(b), DBs in the
lattice with soft-type anharmonicity are highly mobile for all
the considered amplitudes up to ADB = 3.

C. Analytical treatment

In fact, for the soft-type anharmonicity, the on-site potential
Eq. (3) is a Taylor series expansion of 1 − cos ξ up to the
sixth-order term. In this sense, for not very large displacements,
Eqs. (4) can be approximated by the Frenkel-Kontorova model
[57]

mün = K(un−1 − 2un + un+1) − sin(un). (24)

This model reduces to the sine-Gordon equation

utt − uxx + sin u = 0 (25)

in the continuum limit (K → ∞), where x is a continuous
variable corresponding to n and u(x,t) is a slowly varying
function of x and t . Then the well-known moving breather
solution of Eq. (24) [58] has the form

un(t) = 4 arctan
η cos[ζωDB(t − vDBn)]

ωDB cosh[ζη(n − vDBt)]
(26)

after the substitutions of x → n and u(x,t) → un(t), where

η =
√

1 − ω2
DB, ζ = 1√

1 − v2
DB

. (27)

In a comparison of the solution Eq. (26) with our ansatz
Eq. (23), one then derives the following relations for the DB
parameters:

ADB = 4 arctan
η

ωDB
, (28)

θ = ζη, (29)

δ = vDBζωDB. (30)

With this in mind, we also recall another analytical solution
suggested by Ref. [14]; i.e., for small-amplitude breathers,
one can resort to the nonlinear Schrödinger equation, from
which analytical solutions for moving solitons (so, correspond
to moving DBs) are available. Based on this, for the hard-type
anharmonicity, one might find

un(t) = (−1)nADB cos[ωDBt + ωmaxvDBn]

cosh[θ (n − vDBt)]
,

θ =
√

2ωmax� + ω2
maxv

2
DB,

ADB = 4θ, ωDB = ωmax + �, (31)

and for the soft-type anharmonicity, one obtains

un(t) = ADB cos[ωDBt − ωminvDBn]

cosh[θ (n − vDBt)]
,

θ =
√

2ωmin� + ω2
minv

2
DB,

ADB = 4θ, ωDB = ωmin − �. (32)

Here � > 0 is a frequency parameter.

022217-9



DANIAL SAADATMAND et al. PHYSICAL REVIEW E 97, 022217 (2018)

FIG. 15. θ and ADB as functions of ωDB for standing DB for
hard-type [(a), (b)] and soft-type [(c), (d)] anharmonicities, where
the dots give the numerical estimates shown in Table I, the solid lines
correspond to the solutions of the sine-Gordon breather, i.e., Eqs. (28)
and (29), and the dashed lines are the solutions from Eqs. (31) and
(32).

Viewing the above analytical results, in Fig. 15 we plot
both DB inverse width θ and amplitude ADB as functions
of DB frequency ωDB, for the standing DBs, for the hard-
[Figs. 15(a) and 15(b)] and soft-type [Figs. 15(c) and 15(d)]
anharmonicities, respectively. Here, the scattered symbols
give numerical results presented in Table I, the solid lines
in Figs. 15(a) and 15(b) correspond to the solution of the
sine-Gordon breather from Eqs. (28) and (29), and the dashed
lines are the solutions of Eq. (31) and Eq. (32). As can be
seen, both analytical solutions are in good agreement with the
numerical estimate for ADB < 1.5, while we should note that
the accuracy of the sine-Gordon breather solution is somewhat
higher since it considers not only the quartic term of the on-site
potential Eq. (3) but also its sixth-order term.

For the moving DB, in the case of soft-type anharmonicity,
we find that, based on Eqs. (28), (29), and (30), when ADB is
small, ωDB ≈ 1, and for small vDB, vDB ≈ δ. Both are consis-
tent with the numerical estimates in Fig. 14(b). The same con-
clusions can be drawn from Eq. (32), e.g., vDB = δ/ωmin = δ.

For the hard-type anharmonicity, from Eq. (31) one has
vDB = δ/ωmax ≈ 0.447δ, which also agrees well with the
numerical estimates in Fig. 14(a) for the small-amplitude DB
when its velocity is not very high.

D. Relating DBs to energy transfer

With all of the above information, now we relate the
energy transfer process due to the ac driving to properties of
moving DBs. As was already mentioned in Sec. III B, DBs
emitted by the driven particle at driving amplitude A = 0.6
have amplitudes about ADB = 1.1 for both hard- and soft-type
anharmonicities [see dashed lines in Figs. 9(b) and 9(c),
respectively]. The velocity of DBs emitted by the driven

particle at driving amplitude A = 0.6 can be estimated from
Figs. 7(b′) and 7(c′) for hard- and soft-type anharmonicities,
respectively, and they are found to be about 0.12 and 0.23,
respectively. For the soft-type anharmonicity, the measured
DB oscillation period gives a value around T = 0.93, which
suggests a DB frequency of about ωDB = 2πζ/T = 0.96
[59]. For the hard-type anharmonicity the counterpart is about
ωDB = 2.25. All of these show good agreement with both the
numerical estimate in Table I and the analytical results shown
in Fig. 15.

Due to all of these consistencies, one then might come
to the following conclusion: the moving localized excitations
emerging from the ac driven particle do show the properties,
e.g., both amplitude and frequency, similarly to DBs. This
relation thus supports our conjecture that moving DBs are
responsible for the enhancement of energy transfer to the chain
from the driven particle.

V. CONCLUSIONS

Two typical chains of harmonically coupled particles placed
in the sixth-order polynomial on-site potentials of hard-type
and soft-type anharmonicities have been analyzed. First, en-
ergy transfer to the chain from one harmonically driven particle
was analyzed for different driving amplitudes and for two
driving frequencies within the phonon band and close to the
upper and lower edges of the band. Second, properties of
discrete breathers (DBs) were studied.

Our main findings are summarized as follows:
(1) An exact solution for the power of the energy source

in the form of one particle moving according to the harmonic
law with amplitude A and frequency ω in a harmonic chain has
been obtained; see Eq. (14). From this solution, the power of the
energy source increases proportionally to A2. For large times,
the power of the energy source normalized to A2 is proportional
to ω2 and proportional to the group velocity of phonons with
frequency ω. This means that the power at large times vanishes
for driving frequencies at the edges of the phonon band, where
phonon group velocity vanishes.

(2) For the considered nonlinear models, driving with the
amplitude A � 0.2 can be described by the linear theory
quite well. For driving amplitudes A > 0.4, the effect of
anharmonicity should be taken into account.

(3) When driving frequency is far from the DB frequency
and close to the edge of the phonon spectrum, increase in the
driving amplitude results in the reduction of the power, and as
time increases, the power of the energy source approaches a
constant value; see Fig. 5(a) and Fig. 6(b).

(4) When the driving frequency is close to the DB fre-
quency and also close to the edge of the phonon spectrum,
increase in the driving amplitude results in the increase of the
power, and the power oscillates with time quasiperiodically;
see Fig. 5(b) and Fig. 6(a). These oscillations reflect the
emission of DBs moving away from the energy source; see
Fig. 8(b) and 8(c). In the previous works [2,3,10,12–14],
emission of DBs by driving with frequencies outside the
phonon band was reported, but here we demonstrate that they
can also be excited with driving frequencies inside the phonon
band close to the DB frequency.
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Overall, we have demonstrated that in the case of moderate
driving amplitudes and driving frequencies close to the edges
of the phonon band (within the band), DBs enhance energy
transfer to the chain from the harmonically driven particle.
This result contributes to our understanding of dynamics of
nonlinear chains under external driving and uncovers the role
of DBs in such systems.
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