23 research outputs found

    Evolution of Blood-Brain Barrier Permeability in Subacute Ischemic Stroke and Associations With Serum Biomarkers and Functional Outcome

    Get PDF
    Background and Purpose: In the setting of acute ischemic stroke, increased blood-brain barrier permeability (BBBP) as a sign of injury is believed to be associated with increased risk of poor outcome. Pre-clinical studies show that selected serum biomarkers including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF alpha), matrix metallopeptidases (MMP), and vascular endothelial growth factors (VEGFs) may play a role in BBBP post-stroke. In the subacute phase of stroke, increased BBBP may also be caused by regenerative mechanisms such as vascular remodeling and therefore may improve functional recovery. Our aim was to investigate the evolution of BBBP in ischemic stroke using contrast-enhanced (CE) magnetic resonance imaging (MRI) and to analyze potential associations with blood-derived biomarkers as well as functional recovery in subacute ischemic stroke patients. Methods: This is an exploratory analysis of subacute ischemic stroke patients enrolled in the BAPTISe study nested within the randomized controlled PHYS-STROKE trial (interventions: 4 weeks of aerobic fitness training vs. relaxation). Patients with at least one CE-MRI before (v1) or after (v2) the intervention were eligible for this analysis. The prevalence of increased BBBP was visually assessed on T1-weighted MR-images based on extent of contrast-agent enhancement within the ischemic lesion. The intensity of increased BBBP was assessed semi-quantitatively by normalizing the mean voxel intensity within the region of interest (ROI) to the contralateral hemisphere ("normalized CE-ROI"). Selected serum biomarkers (high-sensitive CRP, IL-6, TNF-alpha, MMP-9, and VEGF) at v1 (before intervention) were analyzed as continuous and dichotomized variables defined by laboratory cut-off levels. Functional outcome was assessed at 6 months after stroke using the modified Rankin Scale (mRS). Results: Ninety-three patients with a median baseline NIHSS of 9 [IQR 6-12] were included into the analysis. The median time to v1 MRI was 30 days [IQR 18-37], and the median lesion volume on v1 MRI was 4 ml [IQR 1.2-23.4]. Seventy patients (80%) had increased BBBP visible on v1 MRI. After the trial intervention, increased BBBP was still detectable in 52 patients (74%) on v2 MRI. The median time to v2 MRI was 56 days [IQR 46-67]. The presence of increased BBBP on v1 MRI was associated with larger lesion volumes and more severe strokes. Aerobic fitness training did not influence the increase of BBBP evaluated at v2. In linear mixed models, the time from stroke onset to MRI was inversely associated with normalized CE-ROI (coefficient -0.002, Standard Error 0.007, p < 0.01). Selected serum biomarkers were not associated with the presence or evolution of increased BBBP. Multivariable regression analysis did not identify the occurrence or evolution of increased BBBP as an independent predictor of favorable functional outcome post-stroke. Conclusion: In patients with moderate-to-severe subacute stroke, three out of four patients demonstrated increased BBB permeability, which decreased over time. The presence of increased BBBP was associated with larger lesion volumes and more severe strokes. We could not detect an association between selected serum biomarkers of inflammation and an increased BBBP in this cohort. No clear association with favorable functional outcome was observed

    Current smoking does not modify the treatment effect of intravenous thrombolysis in acute ischemic stroke patients—a post-hoc analysis of the WAKE-UP trial

    Get PDF
    Background: The “smoking paradox” indicates that patients with acute ischemic stroke (AIS) who smoke at the time of their stroke may have a better prognosis after intravenous thrombolysis than non-smokers. However, findings are inconsistent and data analyzing the effect of smoking on treatment efficacy of intravenous thrombolysis are scarce. Methods: We performed a pre-specified post-hoc subgroup analysis of the Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke (WAKE-UP) trial that randomized AIS patients with unknown time of symptom onset who had diffusion-weighted imaging-fluid attenuation inversion recovery (DWI-FLAIR) mismatch to either alteplase or placebo. Patients were categorized as current smokers or non-smokers (including former smokers and never-smokers). Baseline demographic and clinical characteristics, as well as clinical and imaging follow-up data were analyzed according to smoking status. Results: Four hundred and eighty six patients were included in the analysis. Current smokers (133, 27.4%) were younger (60.1 ± 13.0 vs. 67.2 ± 10.3 years; p &lt; 0.001) and less often had arterial hypertension (45.0% vs. 56.8%; p = 0.02) or atrial fibrillation (3.8% vs. 15.3%; p &lt; 0.001). The acute stroke presentation was more often due to large vessel occlusion among current smokers (27.1 vs. 16.2%; p = 0.01), and smokers had a trend towards more severe strokes (National Institutes of Health Stroke Scale score&gt;10 in 27.1% vs. 19.5%; p = 0.08). The treatment effect of alteplase, quantified as odds ratio for a favorable outcome (modified Rankin Scale [mRS] score at 90 days of 0 or 1), did not differ between current smokers and non-smokers (p-value for interaction: 0.59). After adjustment for age and stroke severity, neither the proportion of patients with favorable outcome, nor the median mRS score at 90 days differed between current smokers and non-smokers. When additional potential confounders were included in the model, the median mRS score was higher in current smokers than in non-smokers (cOR of better outcome for current smokers vs. non-smokers: 0.664 [0.451–0.978], p = 0.04). Conclusions: In patients with mild to moderate MRI-proven AIS and unknown time of symptom onset with DWI-FLAIR mismatch, current smokers had worse functional outcome as compared to non-smokers. Current smoking did not modify the treatment effect of alteplase. Clinical Trial registration: Main trial (WAKE-UP): ClinicalTrials.gov, NCT01525290; and EudraCT, 2011-005906-32. Registered 02 February 2012

    Sinteza i antihipoksično djelovanje alifatskih i arilalifatskih amida kofein-8-tioglikolne kiseline

    Get PDF
    The synthesis of some aliphatic and arylaliphatic amides of caffeine-8-thioglycolic acid was studied. The structures of synthesized compounds were proved by microanalyses, IR- and 1H NMR data. Values of acute p.o. and i.p. toxicity in mice show lower toxicity compared to caffeine. Declines in spontaneous locomotor activity support the idea of depressive CNS activity of the compounds. Two compounds exhibited brain antihypoxic activity (5a and 5b against haemic and circulatory hypoxia, respectively).U radu je opisana sinteza alifatskih i arilalifatskih amida kofein-8-tioglikolne kiseline i njihova karakterizacija elementarnom analizom, IR- i 1H NMR spektroskopijom. Testiranja na miĆĄevima pokazuju da su sintetizirani spojevi primijenjeni p.o. i i.p. manje toksični od kofeina. Smanjenje lokomotoričke aktivnosti podupire ideju o njihovom depresivnom djelovanju na SĆœS. Spojevi 5a i 5b djeluju antihipoksički u uvjetima krvne i cirkulacijske hipoksije u mozgu

    Dark-field X-ray imaging for the assessment of osteoporosis in human lumbar spine specimens

    Get PDF
    Background: Dark-field imaging is a novel imaging modality that allows for the assessment of material interfaces by exploiting the wave character of x-ray. While it has been extensively studied in chest imaging, only little is known about the modality for imaging other tissues. Therefore, the purpose of this study was to evaluate whether a clinical X-ray dark-field scanner prototype allows for the assessment of osteoporosis.Materials and methods: In this prospective study we examined human cadaveric lumbar spine specimens (vertebral segments L2 to L4). We used a clinical prototype for dark-field radiography that yields both attenuation and dark-field images. All specimens were scanned in lateral orientation in vertical and horizontal position. All specimens were additionally imaged with CT as reference. Bone mineral density (BMD) values were derived from asynchronously calibrated quantitative CT measurements. Correlations between attenuation signal, dark-field signal and BMD were assessed using Spearman’s rank correlation coefficients. The capability of the dark-field signal for the detection of osteoporosis/osteopenia was evaluated with receiver operating characteristics (ROC) curve analysis.Results: A total of 58 vertebrae from 20 human cadaveric spine specimens (mean age, 73 years ±13 [standard deviation]; 11 women) were studied. The dark-field signal was positively correlated with the BMD, both in vertical (r = 0.56, p &lt; .001) and horizontal position (r = 0.43, p &lt; .001). Also, the dark-field signal ratio was positively correlated with BMD (r = 0.30, p = .02). No correlation was found between the signal ratio of attenuation signal and BMD (r = 0.14, p = .29). For the differentiation between specimens with and without osteoporosis/osteopenia, the area under the ROC curve (AUC) was 0.80 for the dark-field signal in vertical position.Conclusion: Dark-field imaging allows for the differentiation between spine specimens with and without osteoporosis/osteopenia and may therefore be a potential biomarker for bone stability

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Paperbox - A toolkit for exploring tangible interaction on interactive surfaces

    No full text
    There is a well-established culture of early prototyping when designing digital interactive systems, such as paper prototyping and wireframe methods. The culture of designing physical objects is somewhat different: early explorations of form is still prototyped via 2D sketches or renderings, but - mostly because of the construction effort involved - prototyping of actual physical objects is deferred to later stages. The problem occurs when designing mixed physical-digital systems, such as tangible user interfaces (TUI) on interactive surfaces: the high degree of interactivity means that early prototyping is vital, yet there is no viable process for prototyping both the physical and digital aspects simultaneously on a low-fidelity (low-fi) level. Our solution is Paperbox, a toolkit for exploring design ideas for tangible interaction on interactive surfaces. It supports the early exploration of different form factors and immediately provides digital interactivity for the lowfidelity TUI prototypes built with it. We observed our toolkit in use in various settings: as a brainstorming tool by junior designers; in the development of a consumer electronics product in a large industrial company by senior designers; and in a usability study comparing the effect of different levels of fidelity on the outcome. The lessons learnt will enable others to replicate and extend our approach.N

    UV-Induced Charge Transfer States in DNA Promote Sequence Selective Self-Repair

    No full text
    Absorption of UV-radiation in nucleotides initiates a number of photophysical and photochemical processes, which may finally cause DNA damage. One major decay channel of photoexcited DNA leads to reactive charge transfer states. This study shows that these states trigger self-repair of DNA photolesions. The experiments were performed by UV spectroscopy and HPLC on different single and double stranded oligonucleotides containing a cyclobutane pyrimidine dimer (CPD) lesion. In a first experiment we show that photoexcitation of adenine adjacent to a CPD has no influence on this lesion. However, excitation of a guanine (G) adenine (A) sequence leads to reformation of the intact thymine (T) bases. The involvement of two bases for the repair points to a long-living charge transfer state between G and A to be responsible for the repair. The negatively charged A radical anion donates an electron to the CPD, inducing ring splitting and repair. In contrast, a TA sequence, having an inverted charge distribution (T radical anion, A radical cation), is not able to repair the CPD lesion. The investigations show that the presence of an adjacent radical ion is not sufficient for repair. More likely it is the driving power represented by the oxidation potential of the radical ion, which controls the repair. Thus, repair capacities are strongly sequence-dependent, creating DNA regions with different tendencies of self-repair. This self-healing activity represents the simplest sequence-dependent DNA repair system

    Magnetic resonance imaging-based changes in vascular morphology and cerebral perfusion in subacute ischemic stroke

    Get PDF
    MRI-based vessel size imaging (VSI) allows for in-vivo assessment of cerebral microvasculature and perfusion. This exploratory analysis of vessel size (VS) and density (Q; both assessed via VSI) in the subacute phase of ischemic stroke involved sixty-two patients from the BAPTISe cohort (‘Biomarkers And Perfusion--Training-Induced changes after Stroke’) nested within a randomized controlled trial (intervention: 4-week training vs. relaxation). Relative VS, Q, cerebral blood volume (rCBV) and –flow (rCBF) were calculated for: ischemic lesion, perilesional tissue, and region corresponding to ischemic lesion on the contralateral side (mirrored lesion). Linear mixed-models detected significantly increased rVS and decreased rQ within the ischemic lesion compared to the mirrored lesion (coefficient[standard error]: 0.2[0.08] p = 0.03 and −1.0[0.3] p = 0.02, respectively); lesion rCBF and rCBV were also significantly reduced. Mixed-models did not identify time-to-MRI, nor training as modifying factors in terms of rVS or rQ up to two months post-stroke. Larger lesion VS was associated with larger lesion volumes (ÎČ 34, 95%CI 6.2–62; p = 0.02) and higher baseline NIHSS (ÎČ 3.0, 95%CI 0.49–5.3;p = 0.02), but was not predictive of six-month outcome. In summary, VSI can assess the cerebral microvasculature and tissue perfusion in the subacute phases of ischemic stroke, and may carry relevant prognostic value in terms of lesion volume and stroke severity
    corecore