3,708 research outputs found

    Ocupaciones humanas del Plesitoceno terminal en el Occidente de Venezuela

    Get PDF

    Pulsational and evolutionary analysis of the double-mode RR Lyrae star BS Com

    Full text link
    We derive the basic physical parameters of the field double-mode RR Lyrae star BS Com from its observed periods and the requirement of consistency between the pulsational and evolutionary constraints. By using the current solar-scaled horizontal branch evolutionary models of Pietrinferni et al. (2004) and our linear non-adiabatic purely radiative pulsational models, we get M/M(Sun) = 0.698 +/- 0.004, log(L/L(Sun)) = 1.712 +/- 0.005, T(eff) = 6840 +/- 14 K, [Fe/H] = -1.67 +/- 0.01, where the errors are standard deviations assuming uniform age distribution along the full range of uncertainty in age. The last two parameters are in a good agreement with the ones derived from the observed BVIc colours and the updated ATLAS9 stellar atmosphere models. We get T(eff) = 6842 +/- 10 K, [Fe/H] = -1.58 +/- 0.11, where the errors are purely statistical ones. It is remarkable that the derived parameters are nearly independent of stellar age at early evolutionary stages. Later stages, corresponding to the evolution toward the asymptotic giant branch are most probably excluded because the required high temperatures are less likely to satisfy the constraints posed by the colours. We also show that our conclusions are only weakly sensitive to nonlinear period shifts predicted by current hydrodynamical models.Comment: Accepted for publication by MNRAS on 2008 February 01. The paper contains 4 figures and 8 table

    Multi-stage prediction networks for data harmonization

    Get PDF
    In this paper, we introduce multi-task learning (MTL) to data harmonization (DH); where we aim to harmonize images across different acquisition platforms and sites. This allows us to integrate information from multiple acquisitions and improve the predictive performance and learning efficiency of the harmonization model. Specifically, we introduce the Multi Stage Prediction (MSP) Network, a MTL framework that incorporates neural networks of potentially disparate architectures, trained for different individual acquisition platforms, into a larger architecture that is refined in unison. The MSP utilizes high-level features of single networks for individual tasks, as inputs of additional neural networks to inform the final prediction, therefore exploiting redundancy across tasks to make the most of limited training data. We validate our methods on a dMRI harmonization challenge dataset, where we predict three modern platform types, from one obtained from an old scanner. We show how MTL architectures, such as the MSP, produce around 20% improvement of patch-based mean-squared error over current state-of-the-art methods and that our MSP outperforms off-the-shelf MTL networks. Our code is availabl

    Advanced Techniques in Automated High Resolution Scanning Transmission Electron Microscopy

    Full text link
    Scanning transmission electron microscopy is a common tool used to study the atomic structure of materials. It is an inherently multimodal tool allowing for the simultaneous acquisition of multiple information channels. Despite its versatility, however, experimental workflows currently rely heavily on experienced human operators and can only acquire data from small regions of a sample at a time. Here, we demonstrate a flexible pipeline-based system for high-throughput acquisition of atomic-resolution structural data using a custom built sample stage and automation program. The program is capable of operating over many hours without human intervention improving the statistics of high-resolution experiments

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    Severe dengue categories as research endpoints-Results from a prospective observational study in hospitalised dengue patients.

    Get PDF
    Severe dengue was perceived as one clinical disease entity until the WHO 2009 classification stratified it into severe vascular leakage, severe bleeding, and severe organ dysfunction. The objectives of this study were to investigate the potential use of severe dengue categories as endpoints for intervention research. 271 patients with severe dengue among 1734 confirmed dengue patients were followed prospectively in this hospital-based observational study in Latin America and Asia. We compared the distribution of severe dengue categories according to gender and age (below/above 15y), and determined the relative frequency and the overlap of severe dengue categories in the same patients. In a next step, we extended the analysis to candidate moderate severity categories, based on recently suggested definitions which were adapted for our purposes. Severe vascular leakage occurred in 244 (90%), severe bleeding in 39 (14%), and severe organ dysfunction in 28 (10%) of 271 severe dengue patients. A higher frequency of severe leakage was seen in children or adolescents (<15y) compared to adults. More than 80% of the severe leakage cases, and 30-50% of the cases with severe bleeding or severe organ dysfunction, were defined as severe on the basis of that feature alone. In 136 out of 213 patients with severe leakage alone, neither moderate bleeding manifestation nor hepatic involvement was recorded. On the other hand, moderate leakage manifestations were detected in 4 out of 12 cases that were classified as severe based on bleeding alone. A major proportion of severe dengue patients exhibited clinical manifestations of severe vascular leakage only, which may constitute a useful endpoint for intervention research or pathophysiology studies. Severe bleeding and severe organ manifestation were recorded less frequently and exhibited a higher degree of overlap with severe leakage. Severe bleeding without leakage may be associated with individual predisposition or the presence of comorbidities. More detailed assessments are needed to explore this hypothesis. Candidate moderate disease endpoints were investigated and need to be further validated

    Universal Third Trimester Ultrasonic Screening Using Fetal Macrosomia in the Prediction of Adverse Perinatal Outcome, a Systematic Review and Meta-analysis of Diagnostic Test Accuracy.

    Get PDF
    Background: The effectiveness of screening for macrosomia is not well established. One of the critical elements of an effective screening program is the diagnostic accuracy of a test at predicting the condition. The objective of this study is to investigate the diagnostic effectiveness of universal ultrasonic fetal biometry in predicting the delivery of a macrosomic infant, shoulder dystocia, and associated neonatal morbidity in low- and mixed-risk populations. Methods and findings: We conducted a predefined literature search in Medline, Excerpta Medica database (EMBASE), the Cochrane library and ClinicalTrials.gov from inception to May 2020. No language restrictions were applied. We included studies where the ultrasound was performed as part of universal screening and those that included low- and mixed-risk pregnancies and excluded studies confined to high risk pregnancies. We used the estimated fetal weight (EFW) (multiple formulas and thresholds) and the abdominal circumference (AC) to define suspected large for gestational age (LGA). Adverse perinatal outcomes included macrosomia (multiple thresholds), shoulder dystocia, and other markers of neonatal morbidity. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Meta-analysis was carried out using the hierarchical summary receiver operating characteristic (ROC) and the bivariate logit-normal (Reitsma) models. We identified 41 studies that met our inclusion criteria involving 112,034 patients in total. These included 11 prospective cohort studies (N = 9986), one randomized controlled trial (RCT) (N = 367), and 29 retrospective cohort studies (N = 101,681). The quality of the studies was variable, and only three studies blinded the ultrasound findings to the clinicians. Both EFW >4,000 g (or 90th centile for the gestational age) and AC >36 cm (or 90th centile) had >50% sensitivity for predicting macrosomia (birthweight above 4,000 g or 90th centile) at birth with positive likelihood ratios (LRs) of 8.74 (95% confidence interval [CI] 6.84–11.17) and 7.56 (95% CI 5.85–9.77), respectively. There was significant heterogeneity at predicting macrosomia, which could reflect the different study designs, the characteristics of the included populations, and differences in the formulas used. An EFW >4,000 g (or 90th centile) had 22% sensitivity at predicting shoulder dystocia with a positive likelihood ratio of 2.12 (95% CI 1.34–3.35). There was insufficient data to analyze other markers of neonatal morbidity. Conclusions: In this study, we found that suspected LGA is strongly predictive of the risk of delivering a large infant in low- and mixed-risk populations. However, it is only weakly (albeit statistically significantly) predictive of the risk of shoulder dystocia. There was insufficient data to analyze other markers of neonatal morbidity

    Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes

    Get PDF
    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates (413/ha?yr413/ha?yr–637/ha?yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of 299/ha?yr-299/ha?yr--65/ha?yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes
    corecore