38 research outputs found

    Variation of plagioclase shape with size in intermediate magmas : a window into incipient plagioclase crystallisation

    Get PDF
    This work was funded by UK Natural Environment Research Council grant NE/T000430/1.Volcanic rocks commonly display complex textures acquired both in the magma reservoir and during ascent to the surface. While variations in mineral compositions, sizes and number densities are routinely analysed to reconstruct pre-eruptive magmatic histories, crystal shapes are often assumed to be constant, despite experimental evidence for the sensitivity of crystal habit to magmatic conditions. Here, we develop a new program (ShapeCalc) to calculate 3D shapes from 2D crystal intersection data and apply it to study variations of crystal shape with size for plagioclase microlites (l 5–10 µm) show progressively more tabular habits. Crystal growth modelling and experimental constraints indicate that this trend reflects shape evolution during plagioclase growth, with initial growth as prismatic rods and subsequent preferential overgrowth of the intermediate dimension to form tabular shapes. Because overgrowth of very small crystals can strongly affect the external morphology, plagioclase microlite shapes are dependent on the available growth volume per crystal, which decreases during decompression-driven crystallisation as crystal number density increases. Our proposed growth model suggests that the range of crystal shapes developed in a magma is controlled by the temporal evolution of undercooling and total crystal numbers, i.e., distinct cooling/decompression paths. For example, in cases of slow to moderate magma ascent rates and quasi-continuous nucleation, early-formed crystals grow larger and develop tabular shapes, whereas late-stage nucleation produces smaller, prismatic crystals. In contrast, rapid magma ascent may suppress nucleation entirely or, if stalled at shallow depth, may produce a single nucleation burst associated with tabular crystal shapes. Such variation in crystal shapes have diagnostic value and are also an important factor to consider when constructing CSDs and models involving magma rheology.Peer reviewe

    Melt diffusion-moderated crystal growth and its effect on euhedral crystal shapes

    Get PDF
    Crystal growth is often described as either interface-controlled or diffusion-controlled. Here, we study crystal growth in an intermediate scenario where reaction rates at the crystal-melt interface are similar to the rates of diffusive transport of ions through the melt to the advancing crystal surface. To this end, we experimentally investigated euhedral plagioclase crystal shapes in dry mafic (basaltic) and hydrous silicic (haplodacitic) melts. Aspect ratios and inferred relative growth rates of the 3D short (S) and intermediate (I) crystal dimensions vary significantly between mafic and silicic melts, with δS:δI = 1:6 – 1:20 in basalt and 1:2.5 – 1:8 in hydrous haplodacite. The lower aspect ratios of plagioclase grown in the silicic melt coincide with 10-100x lower melt diffusion rates than in the mafic melt. Using an anisotropic growth model, we show that such differences in melt diffusivity can explain the discrepancy in plagioclase aspect ratios: if interface reaction and melt diffusion rates are of similar magnitude, then the growth of a crystal facet with high interfacial reaction rates may be limited by melt diffusion while another facet of the same crystal with lower interfacial reaction rates may grow uninhibited by melt diffusivity. This selective control of melt diffusion on crystal growth rates results in progressively more equant crystal shapes as diffusivity decreases, consistent with our experimental observations. Importantly, crystals formed in this diffusion-moderated, intermediate growth regime may not show any classical diffusion-controlled growth features. The proposed model was developed for plagioclase microlites, but should be generalisable to all anisotropic microlite growth in volcanic rocks

    The Glasgow Microenvironment Score associates with prognosis and adjuvant chemotherapy response in colorectal cancer

    Get PDF
    Background: The Glasgow Microenvironment Score (GMS) combines peritumoural inflammation and tumour stroma percentage to assess interactions between tumour and microenvironment. This was previously demonstrated to associate with colorectal cancer (CRC) prognosis, and now requires validation and assessment of interactions with adjuvant therapy. Methods: Two cohorts were utilised; 862 TNM I–III CRC validation cohort, and 2912 TNM II–III CRC adjuvant chemotherapy cohort (TransSCOT). Primary endpoints were disease-free survival (DFS) and relapse-free survival (RFS). Exploratory endpoint was adjuvant chemotherapy interaction. Results: GMS independently associated with DFS (p = 0.001) and RFS (p < 0.001). GMS significantly stratified RFS for both low risk (GMS 0 v GMS 2: HR 3.24 95% CI 1.85–5.68, p < 0.001) and high-risk disease (GMS 0 v GMS 2: HR 2.18 95% CI 1.39–3.41, p = 0.001). In TransSCOT, chemotherapy type (pinteraction = 0.013), but not duration (p = 0.64) was dependent on GMS. Furthermore, GMS 0 significantly associated with improved DFS in patients receiving FOLFOX compared with CAPOX (HR 2.23 95% CI 1.19–4.16, p = 0.012). Conclusions: This study validates the GMS as a prognostic tool for patients with stage I–III colorectal cancer, independent of TNM, with the ability to stratify both low- and high-risk disease. Furthermore, GMS 0 could be employed to identify a subset of patients that benefit from FOLFOX over CAPOX

    COVID-19: Third dose booster vaccine effectiveness against breakthrough coronavirus infection, hospitalisations and death in patients with cancer: A population-based study

    Get PDF
    Purpose: People living with cancer and haematological malignancies are at increased risk of hospitalisation and death following infection with acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus third dose vaccine boosters are proposed to boost waning immune responses in immunocompromised individuals and increase coronavirus protection; however, their effectiveness has not yet been systematically evaluated. Methods: This study is a population-scale real-world evaluation of the United Kingdom’s third dose vaccine booster programme for cancer patients from 8th December 2020 to 7th December 2021. The cancer cohort comprises individuals from Public Health England’s national cancer dataset, excluding individuals less than 18 years. A test-negative case-control design was used to assess third dose booster vaccine effectiveness. Multivariable logistic regression models were fitted to compare risk in the cancer cohort relative to the general population. Results: The cancer cohort comprised of 2,258,553 tests from 361,098 individuals. Third dose boosters were evaluated by reference to 87,039,743 polymerase chain reaction (PCR) coronavirus tests. Vaccine effectiveness against breakthrough infections, symptomatic infections, coronavirus hospitalisation and death in cancer patients were 59.1%, 62.8%, 80.5% and 94.5% respectively. Lower vaccine effectiveness was associated with a cancer diagnosis within 12 months, lymphoma, recent systemic anti-cancer therapy (SACT) or radiotherapy. Lymphoma patients had low levels of protection from symptomatic disease. In spite of third dose boosters, following multivariable adjustment, individuals with cancer remain at increased risk of coronavirus hospitalisation and death compared to the population control (OR 3.38, 3.01 respectively. p<0.001 for both). Conclusions: Third dose boosters are effective for most individuals with cancer, increasing protection from coronavirus. However, their effectiveness is heterogenous, and lower than the general population. Many patients with cancer will remain at increased risk of coronavirus infections, even after 3 doses. In the case of patients with lymphoma, there is a particularly strong disparity of vaccine effectiveness against breakthrough infection and severe disease. Breakthrough infections will disrupt cancer care and treatment with potentially adverse consequences on survival outcomes. The data support the role of vaccine boosters in preventing severe disease, and further pharmacological intervention to prevent transmission and aid viral clearance to limit disruption of cancer care as the delivery of care continues to evolve during the coronavirus pandemic

    The Glasgow Microenvironment Score associates with prognosis and adjuvant chemotherapy response in colorectal cancer

    Get PDF
    Background The Glasgow Microenvironment Score (GMS) combines peritumoural inflammation and tumour stroma percentage to assess interactions between tumour and microenvironment. This was previously demonstrated to associate with colorectal cancer (CRC) prognosis, and now requires validation and assessment of interactions with adjuvant therapy. Methods Two cohorts were utilised; 862 TNM I–III CRC validation cohort, and 2912 TNM II–III CRC adjuvant chemotherapy cohort (TransSCOT). Primary endpoints were disease-free survival (DFS) and relapse-free survival (RFS). Exploratory endpoint was adjuvant chemotherapy interaction. Results GMS independently associated with DFS (p = 0.001) and RFS (p < 0.001). GMS significantly stratified RFS for both low risk (GMS 0 v GMS 2: HR 3.24 95% CI 1.85–5.68, p < 0.001) and high-risk disease (GMS 0 v GMS 2: HR 2.18 95% CI 1.39–3.41, p = 0.001). In TransSCOT, chemotherapy type (pinteraction = 0.013), but not duration (p = 0.64) was dependent on GMS. Furthermore, GMS 0 significantly associated with improved DFS in patients receiving FOLFOX compared with CAPOX (HR 2.23 95% CI 1.19–4.16, p = 0.012). Conclusions This study validates the GMS as a prognostic tool for patients with stage I–III colorectal cancer, independent of TNM, with the ability to stratify both low- and high-risk disease. Furthermore, GMS 0 could be employed to identify a subset of patients that benefit from FOLFOX over CAPOX

    Variable water input controls evolution of the Lesser Antilles volcanic arc

    Get PDF
    Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards

    Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: The pilot phase of a randomised controlled trial

    Get PDF
    Summary: Background Preoperative (neoadjuvant) chemotherapy and radiotherapy are more eff ective than similar postoperative treatment for oesophageal, gastric, and rectal cancers, perhaps because of more eff ective micrometastasis eradication and reduced risk of incomplete excision and tumour cell shedding during surgery. The FOxTROT trial aims to investigate the feasibility, safety, and effi cacy of preoperative chemotherapy for colon cancer. Methods In the pilot stage of this randomised controlled trial, 150 patients with radiologically staged locally advanced (T3 with ≥5 mm invasion beyond the muscularis propria or T4) tumours from 35 UK centres were randomly assigned (2:1) to preoperative (three cycles of OxMdG [oxaliplatin 85 mg/m², l-folinic acid 175 mg, fl uorouracil 400 mg/m² bolus, then 2400 mg/m² by 46 h infusion] repeated at 2-weekly intervals followed by surgery and a further nine cycles of OxMdG) or standard postoperative chemotherapy (12 cycles of OxMdG). Patients with KRAS wild-type tumours were randomly assigned (1:1) to receive panitumumab (6 mg/kg; every 2 weeks with the fi rst 6 weeks of chemotherapy) or not. Treatment allocation was through a central randomisation service using a minimised randomisation procedure including age, radiological T and N stage, site of tumour, and presence of defunctioning colostomy as stratifi cation variables. Primary outcome measures of the pilot phase were feasibility, safety, and tolerance of preoperative therapy, and accuracy of radiological staging. Analysis was by intention to treat. This trial is registered, number ISRCTN 87163246. Findings 96% (95 of 99) of patients started and 89% (85 of 95) completed preoperative chemotherapy with grade 3–4 gastrointestinal toxicity in 7% (seven of 94) of patients. All 99 tumours in the preoperative group were resected, with no signifi cant diff erences in postoperative morbidity between the preoperative and control groups: 14% (14 of 99) versus 12% (six of 51) had complications prolonging hospital stay (p=0·81). 98% (50 of 51) of postoperative chemotherapy patients had T3 or more advanced tumours confi rmed at post-resection pathology compared with 91% (90 of 99) of patients following preoperative chemotherapy (p=0·10). Preoperative therapy resulted in signifi cant downstaging of TNM5 compared with the postoperative group (p=0·04), including two pathological complete responses, apical node involvement (1% [one of 98] vs 20% [ten of 50], p<0·0001), resection margin involvement (4% [ four of 99] vs 20% [ten of 50], p=0·002), and blinded centrally scored tumour regression grading: 31% (29 of 94) vs 2% (one of 46) moderate or greater regression (p=0·0001). Interpretation Preoperative chemotherapy for radiologically staged, locally advanced operable primary colon cancer is feasible with acceptable toxicity and perioperative morbidity. Proceeding to the phase 3 trial, to establish whether the encouraging pathological responses seen with preoperative therapy translates into improved long-term oncological outcome, is appropriate
    corecore