257 research outputs found

    An infinitesimally nonrigid polyhedron with nonstationary volume in the Lobachevsky 3-space

    Full text link
    We give an example of an infinitesimally nonrigid polyhedron in the Lobachevsky 3-space and construct an infinitesimal flex of that polyhedron such that the volume of the polyhedron isn't stationary under the flex.Comment: 10 pages, 2 Postscript figure

    From Hurwitz numbers to Kontsevich-Witten tau-function: a connection by Virasoro operators

    Full text link
    In this letter,we present our conjecture on the connection between the Kontsevich--Witten and the Hurwitz tau-functions. The conjectural formula connects these two tau-functions by means of the GL()GL(\infty) group element. An important feature of this group element is its simplicity: this is a group element of the Virasoro subalgebra of gl()gl(\infty). If proved, this conjecture would allow to derive the Virasoro constraints for the Hurwitz tau-function, which remain unknown in spite of existence of several matrix model representations, as well as to give an integrable operator description of the Kontsevich--Witten tau-function.Comment: 13 page

    Faces of matrix models

    Full text link
    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and non-linear equations, as tau-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.Comment: 10 page

    Refined open intersection numbers and the Kontsevich-Penner matrix model

    Get PDF
    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed

    The Immirzi Parameter as an Instanton Angle

    Full text link
    The Barbero-Immirzi parameter is a one parameter quantization ambiguity underpinning the loop approach to quantum gravity that bears tantalizing similarities to the theta parameter of gauge theories such as Yang-Mills and QCD. Despite the apparent semblance, the Barbero-Immirzi field has resisted a direct topological interpretation along the same lines as the theta-parameter. Here we offer such an interpretation. Our approach begins from the perspective of Einstein-Cartan gravity as the symmetry broken phase of a de Sitter gauge theory. From this angle, just as in ordinary gauge theories, a theta-term emerges from the requirement that the vacuum is stable against quantum mechanical tunneling. The Immirzi parameter is then identified as a combination of Newton's constant, the cosmological constant, and the theta-parameter.Comment: 24 page

    Sabitov polynomials for volumes of polyhedra in four dimensions

    Full text link
    In 1996 I.Kh. Sabitov proved that the volume of a simplicial polyhedron in a 3-dimensional Euclidean space is a root of certain polynomial with coefficients depending on the combinatorial type and on edge lengths of the polyhedron only. Moreover, the coefficients of this polynomial are polynomials in edge lengths of the polyhedron. This result implies that the volume of a simplicial polyhedron with fixed combinatorial type and edge lengths can take only finitely many values. In particular, this yields that the volume of a flexible polyhedron in a 3-dimensional Euclidean space is constant. Until now it has been unknown whether these results can be obtained in dimensions greater than 3. In this paper we prove that all these results hold for polyhedra in a 4-dimensional Euclidean space.Comment: 23 pages; misprints corrected, Lemma 6.1 slightly rewritten, title change

    HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations

    Full text link
    Explicit answer is given for the HOMFLY polynomial of the figure eight knot 414_1 in arbitrary symmetric representation R=[p]. It generalizes the old answers for p=1 and 2 and the recently derived results for p=3,4, which are fully consistent with the Ooguri-Vafa conjecture. The answer can be considered as a quantization of the \sigma_R = \sigma_{[1]}^{|R|} identity for the "special" polynomials (they define the leading asymptotics of HOMFLY at q=1), and arises in a form, convenient for comparison with the representation of the Jones polynomials as sums of dilogarithm ratios. In particular, we construct a difference equation ("non-commutative A-polynomial") in the representation variable p. Simple symmetry transformation provides also a formula for arbitrary antisymmetric (fundamental) representation R=[1^p], which also passes some obvious checks. Also straightforward is a deformation from HOMFLY to superpolynomials. Further generalizations seem possible to arbitrary Young diagrams R, but these expressions are harder to test because of the lack of alternative results, even partial.Comment: 14 page

    A discrete Laplace-Beltrami operator for simplicial surfaces

    Get PDF
    We define a discrete Laplace-Beltrami operator for simplicial surfaces. It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called ``cotan formula'') except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new definitions of discrete harmonic functions, discrete mean curvature, and discrete minimal surfaces. The definition of the discrete Laplace-Beltrami operator depends on the existence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the existence is known, we prove the uniqueness. Using Rippa's Theorem we show that, as claimed, Musin's harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces.Comment: 18 pages, 6 vector graphics figures. v2: Section 2 on Delaunay triangulations of piecewise flat surfaces revised and expanded. References added. Some minor changes, typos corrected. v3: fixed inaccuracies in discussion of flip algorithm, corrected attributions, added references, some minor revision to improve expositio

    Superpolynomials for toric knots from evolution induced by cut-and-join operators

    Full text link
    The colored HOMFLY polynomials, which describe Wilson loop averages in Chern-Simons theory, possess an especially simple representation for torus knots, which begins from quantum R-matrix and ends up with a trivially-looking split W representation familiar from character calculus applications to matrix models and Hurwitz theory. Substitution of MacDonald polynomials for characters in these formulas provides a very simple description of "superpolynomials", much simpler than the recently studied alternative which deforms relation to the WZNW theory and explicitly involves the Littlewood-Richardson coefficients. A lot of explicit expressions are presented for different representations (Young diagrams), many of them new. In particular, we provide the superpolynomial P_[1]^[m,km\pm 1] for arbitrary m and k. The procedure is not restricted to the fundamental (all antisymmetric) representations and the torus knots, still in these cases some subtleties persist.Comment: 23 pages + Tables (51 pages
    corecore