In this letter,we present our conjecture on the connection between the
Kontsevich--Witten and the Hurwitz tau-functions. The conjectural formula
connects these two tau-functions by means of the GL(∞) group element. An
important feature of this group element is its simplicity: this is a group
element of the Virasoro subalgebra of gl(∞). If proved, this conjecture
would allow to derive the Virasoro constraints for the Hurwitz tau-function,
which remain unknown in spite of existence of several matrix model
representations, as well as to give an integrable operator description of the
Kontsevich--Witten tau-function.Comment: 13 page