3,036 research outputs found

    Communications and Politics: The Media and the Message

    Get PDF

    Backbone conformational flexibility of the lipid modified membrane anchor of the human N-Ras protein investigated by solid-state NMR and molecular dynamics simulation

    Get PDF
    AbstractThe lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest due to its membrane anchor that determines the activity and subcellular location of the protein. Previous solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between three structural models exist that had been determined previously. We applied a combination of solid-state nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182 undergo collective conformational exchange. Two major structures constituting about 60% of all conformations could be identified. The two conformations found in the simulation are in rapid exchange, which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental NMR methods. These parameters were also determined from two 300 ns conventional MD simulations, providing very good agreement with the experimental data

    How predation shapes the social interaction rules of shoaling fish

    Get PDF
    Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish (Poecilia reticulata) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction–repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour.</jats:p

    Rapid evolution of coordinated and collective movement in response to artificial selection.

    Get PDF
    Collective motion occurs when individuals use social interaction rules to respond to the movements and positions of their neighbors. How readily these social decisions are shaped by selection remains unknown. Through artificial selection on fish (guppies, Poecilia reticulata) for increased group polarization, we demonstrate rapid evolution in how individuals use social interaction rules. Within only three generations, groups of polarization-selected females showed a 15% increase in polarization, coupled with increased cohesiveness, compared to fish from control lines. Although lines did not differ in their physical swimming ability or exploratory behavior, polarization-selected fish adopted faster speeds, particularly in social contexts, and showed stronger alignment and attraction responses to multiple neighbors. Our results reveal the social interaction rules that change when collective behavior evolves

    Interim Toxicity Analysis From the Randomized HERMES Trial of 2- and 5-Fraction Magnetic Resonance Imaging-Guided Adaptive Prostate Radiation Therapy.

    Get PDF
    PURPOSE: Ultrahypofractionated radiation therapy (UHRT) is an effective treatment for localized prostate cancer with an acceptable toxicity profile; boosting the visible intraprostatic tumor has been shown to improve biochemical disease-free survival with no significant effect on genitourinary (GU) and gastrointestinal (GI) toxicity. METHODS AND MATERIALS: HERMES is a single-center noncomparative randomized phase 2 trial in men with intermediate or lower high risk prostate cancer. Patients were allocated (1:1) to 36.25 Gy in 5 fractions over 2 weeks or 24 Gy in 2 fractions over 8 days with an integrated boost to the magnetic resonance imaging (MRI) visible tumor of 27 Gy in 2 fractions. A minimization algorithm with a random element with risk group as a balancing factor was used for participant randomization. Treatment was delivered on the Unity MR-Linac (Elekta AB) with daily online adaption. The primary endpoint was acute GU Common Terminology Criteria for Adverse Events version 5.0 toxicity with the aim of excluding a doubling of the rate of acute grade 2+ GU toxicity seen in PACE. Analysis was by treatment received and included all participants who received at least 1 fraction of study treatment. This interim analysis was prespecified (stage 1 of a 2-stage Simon design) for when 10 participants in each treatment group had completed the acute toxicity monitoring period (12 weeks after radiation therapy). RESULTS: Acute grade 2 GU toxicity was reported in 1 (10%) patient in the 5-fraction group and 2 (20%) patients in the 2-fraction group. No grade 3+ GU toxicities were reported. CONCLUSIONS: At this interim analysis, the rate of GU toxicity in the 2-fraction and 5-fraction treatment groups was found to be below the prespecified threshold (5/10 grade 2+) and continuation of the study to complete recruitment of 23 participants per group was recommended

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
    • …
    corecore