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The lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest
due to its membrane anchor that determines the activity and subcellular location of the protein. Previous
solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be
indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between
three structural models exist that had been determined previously. We applied a combination of solid-state
nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations
using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of
correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182
undergo collective conformational exchange. Two major structures constituting about 60% of all
conformations could be identified. The two conformations found in the simulation are in rapid exchange,
which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental
NMR methods. These parameters were also determined from two 300 ns conventional MD simulations,
providing very good agreement with the experimental data.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

More and more evidence is accumulating that the structures of
soluble proteins are best represented by dynamic structural ensem-
bles rather than a single “frozen” conformation. In particular,
biological function of these molecules has been found to depend on
dynamic processes that include less populated excited states out of an
ensemble of the highly populated ground state. Such processes have
recently received much attention as NMR and other methods have
been developed to study such events [1,2]. Interestingly, membrane
proteins can also be remarkably mobile molecules [3-7] that reside in
a membrane environment formed by lipids. Recent research has
shown that the membrane represents a highly dynamic assembly of
ical shift; DMPC, 1,2-dimyr-
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flexible molecules providing the most appropriate environment for
membrane protein function [8,9]. In addition to transmembrane
proteins that for instance constitute channels or receptors, peripheral
membrane proteins are responsible for numerous biological functions
in signal transduction. One such peripheral membrane protein is the
lipid modified Ras.

Ras proteins constitute a small class of GTP binding proteins, which
are of great interest due to their association with cancer development
[10]. The membrane binding domains of Ras proteins are of particular
interest as membrane association is crucial for protein activity [11,12].
Pharmacological approaches aiming to influence Ras function, for
example, are typically based on alteration of the membrane associa-
tion [13,14]. The soluble N-terminal G domain shows highest
homology between the four members of the Ras family, while
significant differences are observed in the C-terminal region. In this
hypervariable region of 23 or 24 amino acids, the homology is less
than 15% [15,16]. This region also features the membrane anchor of
Ras, which may consist of three lipid modifications (H-Ras), two lipid
modifications (N-Ras and K-Ras4A), or one lipid modification in
combination with a cluster of basic amino acids (K-Ras4B) [17]. Since
all Ras isoforms interact with the same effectors in vitro but provide
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different output signals in vivo, these biological differences must be
imparted by the alteration in the hypervariable region [18]. Further,
the distribution of Ras between liquid crystalline and raft domains of
the plasma membrane [16] and the life time in various cellular
membranes [19] is thought to be highly important for the biological
function of Ras. All these topics involve the Ras anchoring domain, its
lipid modifications, and their interaction of with the membrane.

Until recently, very little structural and dynamical data was
available to base understanding of the interesting membrane
structural biology of Ras. Progress in the synthesis strategies of
lipidated proteins [20,21] as well as advanced solid-state NMR
technologies [22,23] have provided more insights into the structure
and dynamics of the Ras membrane anchor. Using these innovations,
we recently described a first structural model of the membrane
anchor of the entire N-Ras protein [24] and quantitatively char-
acterized the molecular dynamics of this protein region bound to
lipid membranes [25]. In these studies, structural information was
obtained from isotropic chemical shifts determined from 13C and 1H
magic-angle spinning (MAS) NMR data. Modern data base
approaches can convert chemical shift information into structural
data and vice versa [26-28]. Though typically rather precise, the
relationship between chemical shift and secondary structure is not
always unambiguous. In the determination of the Ras structural
model the chemical shift data converged into a single set of
backbone torsion angles for all amino acids except for Met 182,
where three rather equally populated conformations were predicted
[24] by the TALOS database approach [26]. This situation is
illustrated in Fig. 1, which shows the backbone torsion angle
distributions for Met 182 determined from TALOS. To be most
objective, three sets of structures were calculated (Fig. 1B–D) and
the final model was selected based on intermolecular protein-
membrane NOEs [29,30].

Nevertheless, the question remains if the structural degrees of
freedom of the Ras membrane anchor implied by the three sets of
torsion angles found for Met 182 represent conformers that are
populated with a lesser probability or just denote false predictions
from the TALOS database. Previous short MD simulations have also
indicated structural flexibility in the Ras membrane anchor [31]. To
better understand this issue, we carried out MD simulations that were
accompanied by additional experimental NMR investigations, a
combination that has lately been used increasingly often as highly
complementary techniques [32-35]. MD simulations provide an
atomistic picture in an all atom representation on a time frame of
Fig. 1. The backbone structure of the membrane anchor of the human N-Ras protein
was previously predicted by measurement of 1H and 13C chemical shift values and
subsequent analysis by TALOS.While all other amino acids exhibited a dominant cluster
of torsion angle pairs, Met 182 exhibited three similarly populated states, which are
shown in a Ramachandran diagram in panel A (sterically allowed torsion angle ranges
are indicated in grey). From the obtained torsion angles, three families of structures
were predicted and the ten lowest energy backbone structures of each are shown in B,
C, and D. Based on other available experimental data, the structure family shown in D
was considered to constitute the most likely conformation.
up to hundreds of nanoseconds. Thus, not only backbone torsion
angles can be observed for the peptide but also its conformational
dynamics, i.e. interconversion between conformational states.
Further, the simulations allows for an analysis of the peptide structure
in terms of correlations within the entire backbone while the
structure prediction programs typically only consider the influence
of the directly neighboring amino acids in a structure. In addition, we
analyzed the molecular dynamics of the membrane bound peptide
from NMR relaxation experiments and measurements of the motion-
ally averaged dipolar couplings [36,37], allowing direct comparison
with the fast motions of themolecule observed in theMD simulations.
Thus, a rather comprehensive image of the dynamic conformation of
the Ras membrane anchor emerges.

2. Materials and methods

2.1. Sample preparation

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) was pro-
cured from Avanti Polar Lipids (Alabaster, AL) and used without
further purification. Protected amino acids and coupling reagents
were obtained from Novabiochem (La Jolla, CA) and Fmoc protected
U-13C/15N labeled amino acids were purchased from Euriso-Top
(Saarbrücken, Germany) The Ras peptide with the amino-acid
sequence H-Gly-Cys(HD)-Met-Gly-Leu-Pro-Cys(HD)-OMe was
synthesized following Hinterding et al. [38], Nägele et al. [39], and
Schelhaas et al. [40]. HD means a hexadecyl thioether. The peptide
was uniformly 13C and 15N labeled. Aliquots of Ras peptide and
phospholipid (1:10 molar ratio) were combined in chloroform, dried
using a rotary evaporator, and then dissolved in cyclohexane. After
freezing in liquid nitrogen, the samples were lyophilized under a
vacuum of approximately 0.1 mbar. Subsequently, the sample was
hydrated to 35 wt% with deuterium-depleted 1H2O buffer (10 mM
HEPES, 10mMNaCl, 1 mMMgCl2, pH 7.4), freeze–thawed, stirred, and
gently centrifuged for equilibration. They were then transferred into
4 mm MAS rotors with Teflon insert.

2.2. MAS NMR spectroscopy

All MAS NMR experiments were carried out on the Avance 750
spectrometer at resonance frequencies of 749.8 MHz for 1H and
188.5 MHz for 13C using a double-resonance MAS probe equipped
with a 4 mm spinning module. Chemical shifts were referenced
relative to TMS. 13C cross-polarization MAS spectra were acquired
using a 4 μs 1H 90° excitation pulse and a contact time of 0.7 ms. The
strength of the 1H–13C dipolar couplings was measured using the
constant time dipolar and chemical shift (DIPSHIFT) pulse sequence
[41]. 1H–1H homonuclear decoupling was achieved with the
frequency-switched Lee–Goldburg (FSLG) sequence [42]. Since the
dipolar-induced signal decay is periodic, it was only necessary to
acquire the signal over one rotor period in the indirect dimension. The
time evolution of the C–H dipolar couplings in 2D DIPSHIFT
experiments was simulated for one rotor period [41]. Simulations
were performed for varying dipolar coupling strengths with powder
averaging in 2° increments for the β and γ Euler angles. Order
parameters were determined as the ratio of motionally averaged and
full dipolar coupling, determined for rigid amino acids [43].

13C MAS T1 and T2 relaxation times were measured using standard
pulse sequences. Typical 13C π/2 pulse lengths were 5 μs. The
temperature dependence of the relaxation times was simulated using
a modified Lipari–Szabo approach [44] with an Arrhenius tempera-
ture dependence of the correlation times with τ0=10−15 s [45]. It
was further assumed that any hydrogens directly bonded to the 13Cα
relax its spin. Anisotropic interactions aremodeled both for the fast (f)
and the slow (s) peptide motions while the overall isotropic
reorientation of the peptide was assumed to be inhibited by the
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presence of the membrane and the corresponding correlation time τR
was set to infinity. The spectral density functions are then given
by [44]

j ωð Þ = 1
5

1− S2f
� �

τf

1 + ωτfð Þ2 +
S2f − S2

� �
τs

1 + ωτsð Þ2

2
4

3
5; ð1Þ

where the fast motions are described by the order parameter Sf and
the correlation time τf while Ss and τs describe the slow motions. The
overall order parameter is the product of the two individual order
parameters S=Sf×Ss and the experimentally determined DIPSHIFT
order parameter was used for it to reduce the number of fitting
parameters in the model.

2.3. MD simulations

All simulations consisted of four Ras peptides, 40 DMPC lipids, and
984 waters. Setup of the membrane was conducted following
published procedures [46]. Two peptides were added to each
monolayer of the membrane and aligned according to previously
determined experimental data [30]. The starting configuration of the
peptide backbone was taken from the experimentally determined
backbone structure [24]. Subsequently, pre-equilibrated lipids were
randomly picked and homogeneously distributed in the plane of each
monolayer. Initially, the surface area was estimated from the
previously published experimentally measured deuterium order
parameters of the lipids and peptides [30] and the relation between
order parameters and molecular surface area [47]. During equilibra-
tion the order parameters of the lipids slightly deviated from the
ones measured experimentally so that the area was adjusted until
the order parameters from simulation and experiment agreed. The
program CHARMM [48] was employed for the simulation and its
analysis, using the CHARMM all-H CMAP protein force field [49,50]
with the all-H lipid force field, including a recent refinement of the
saturated acyl-chain torsions [51]. The smooth particle-mesh Ewald
algorithm was used to compute the electrostatic forces [52] and the
SHAKE algorithm was used to maintain rigid all bonds involving
hydrogen atoms, allowing a 2 fs time step [53]. All simulations were
run under conditions of constant surface area and normal pressure
(1.013 bar).

A replica exchange technique was employed to enhance sampling
of the backbone conformations [54-57]. In total, 34 replicas were
simulated at temperatures ranging from 303 K to 514 K. Spacing of the
temperatures was adjusted such that the probability to accept a swap
of replicas in neighboring temperatures was ~10%. The simulation
reported followed an equilibration replica exchange simulation that
was run for 54.2 ns. The production simulation was continued for 39.2
ns and all data presented here were taken from the lowest
temperature bath at 303 K.

Two conventional MD simulations of 300 ns length each were also
conducted to allow calculation of correlation functions. The starting
configurations were taken from two independent replicas in the
lowest temperature bath at the end of the replica exchange
simulation. An additional equilibration of 5 ns was conducted before
the start of the production run.

Analysis of the simulations included several comparisons with
experimental data. Since the necessary calculations are relatively
complicated and rather rarely shown explicitly for MD simulations a
short summary is given here. The analysis included the calculation of
13C T1 and T2 relaxation times, which were obtained via the discrete
P2 correlation function g of the corresponding C–H bonds that is
defined as

g nΔtð Þ = G0 nΔtð Þ + 2G1 nΔtð Þ + 2G2 nΔtð Þ
5

; ð2Þ
where Δt is the distance between neighboring points and n the
running index. The individual Gm(nΔt) are defined as

Gm nΔtð Þ = 4π
5

hY2m j;ϑ;φð ÞYT
2m j−nΔt;ϑ;φð Þij − j hY2m k;ϑ;φð Þik j2

� �
;

ð3Þ

where averaging is performed over all possible indices j and k. Here
the well known spherical harmonics Y2m(nΔt, ϑ, φ) are used, which
are calculated using the spherical coordinates (ϑ, φ) of the C–H bond
vector at the time point nΔt that can be directly extracted from the
MD simulation. The Fourier transform of the P2 correlation function
is the spectral density function j(ωk), which is also discrete and
defined as

j ωkð Þ = 2
Xl−1

n=0

g nΔtð Þ � cos ωk � nΔtð ÞΔt; ð4Þ

where l is the number of points in the correlation function and the
discrete frequencies are defined as

ωk = 2π
k
lΔt

: ð5Þ

Many mathematics packages include predefined functions with
superior performance for calculating correlation functions and Fourier
transforms but special care has to be applied since they often use
different prefactors. Subsequently, the spectral density is sampled at
various frequencies to facilitate the calculation of T1 and T2 relaxation
times via

1
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where χD is the dipolar coupling constant (which has a value of
22.7 kHz for a 13C–1H bond), Δσ is the span of the chemical shift
anisotropy tensor (which has a value of 37 ppm for Gly and Pro,
24 ppm for Met, 38 ppm for Leu, and 29 ppm for Cys [58]), nH is the
number of hydrogens bound to the 13C atom, and ωX is the Lamor
frequency of the nucleus X at the investigated magnetic field strength.

Calculating relaxation times from MD simulations by this formal-
ism poses several technical problems. First, the correlation function
typically becomes very noisy at the end due to insufficient sampling,
which upon Fourier transformation refolds into the spectral density,
which then becomes noisy as well. To reduce this problem we fitted
the correlation function to a set of exponentials [59] and replaced the
noisy long time tail by the fit (one has to be careful to switch from the
true correlation function to the fit in a point where both are very close
to each other since any discontinuity leads to artifacts in the spectral
density). Second, the correlation function and spectral density will be
discrete for MD simulations, which might lead to considerable errors
in the frequencies, at which the spectral density is sampled for
calculation of the relaxation times. To circumvent this problem it is
useful to cut a few points at the end of the correlation function before
Fourier transformation to change the spacing of points in the spectral
density (the distance between neighboring points in j(ωk) is 2π/lΔt).

Another scarcely described procedure is the prediction of DIPSHIFT
order parameters fromMD simulations. For this, first the tensor of the
dipolar interaction has to be averaged over all simulation frames. In



Fig. 2. Histograms of the backbone torsion angle Φ of Pro 185 (A) and Met 182 (B)
determined from the replica exchange simulation. Data were taken from the lowest
temperature bath (303 K) of the replica exchange simulation. While the histogram for
Φ of Pro 185 shows a single conformation Φ of Met 182 exhibits four distinct maxima
indicating large structural flexibility of the peptide backbone in this region.
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the principal axis system this tensor is diagonal and has the general
matrix representation

DPAS =
Dxx 0 0
0 Dyy 0
0 0 Dzz

0
@

1
A; ð7Þ

where for a 13C–1H bond Dxx=Dyy=–11.35 kHz and Dzz=22.7 kHz.
Since this tensor is expressed in the PAS, whose largest component is
aligned along the C–H bond a coordinate transformation to a fixed
system has to be conducted for each simulation frame using

Dfixed = R−1 α;β;γð ÞDPASR α;β;γð Þ; ð8Þ

where R(α, β, γ) denotes the well known Euler rotation matrix with
the Euler angles α, β, and γ. When performing this rotation, one has
to be careful to distinguish between passive and active rotations as
α, β, γ, and R(α, β, γ) are differently defined for the two cases [60].
Subsequently, the interaction tensor in the fixed frame Dfixed is
averaged over all time steps of the simulation. It might also be useful
to average the interaction tensor over several molecules (instead of
averaging over their individual order parameters at the end) since this
can reduce the difference in the time scales of the DIPSHIFT
experiment (a few microseconds) and the simulation (hundreds of
nanoseconds). This way motions not completely sampled for a single
molecule of the simulation (e.g. axial reorientation) can artificially be
introduced and contribute to the reduction of the DIPSHIFT order
parameter. However, one has to be careful when doing this as it has to
be certain that the molecules, over which are averaged exchange on
the timescale of the DIPSHIFT experiment. For instance, one should
usually not average over molecules in different leaflets of the bilayer
unless flip-flop occurs on the timescale of the DIPSHIFT experiment,
which is unlikely for mostmembranemolecules. The average tensor is
then diagonalized by calculation of the eigenvectors, assembling them
into a rotation matrix R2 by using each eigenvector for one column
and subsequent coordinate transformation using

Ddiagonal = R−1
2 hDfixediR2: ð9Þ

The largest principal component of Ddiagonal is then put into propor-
tion with Dzz such that the DIPSHIFT order parameter is defined as
SDIPSHIFT=max(|Dxx

diagonal|, |Dyy
diagonal|, |Dzz

diagonal|)/Dzz.

3. Results

3.1. Structural variability of the Ras backbone

The backbone torsion angles of the seven amino acid membrane
anchor of the human N-Ras protein were previously determined from
1H and 13C chemical shifts using TALOS [26], which lead to a first
structural model determined by solid-state NMR [24]. However, the
relation between isotropic chemical shifts and secondary structure
was ambiguous for Met 182 (Fig. 1). Fortunately, for all other amino
acids TALOS provided conclusive results for Φ,Ψ pairs. Since TALOS is
a pure database approach a simulated annealing protocol was used to
generate the resulting structures. The three different sets of Met 182
Φ, Ψ pairs were treated independently such that the simulated
annealing was conducted for all of them and the resulting ten lowest
energy backbone structures are shown in Fig. 1B–D.

In the original article [24] additional structural constraints
determined in previous investigations [29,30] were used to select
one structure, which agreed with all available data and therefore
represented the most likely model of the Ras backbone structure (ref.
Fig. 1D). Here, we seek to learn if the three conformations that
resulted from the ambiguity of the TALOS results for Met 182 would
represent populated structures or were solely caused by the non-
perfect correlation between chemical shift and secondary structure.
To this end, we conducted MD simulations, which allow to directly
observe the backbone torsion angles and to identify different
conformers if present. For these simulations the structural model
determined previously was used to generate the starting configura-
tion [24]. Since conventional simulation approaches did not result in
sufficient sampling of the backbone torsions [31,61] the replica
exchange technique was used here with temperatures ranging from
303 K to 514 K. A Monte Carlo procedure is applied periodically to
swap configurations among the various temperatures, thus each
replica spends time at higher temperatures allowing transitions over
high energy barriers, which is unlikely to happen at the temperature
of primary interest. Therefore, the rate of transitions for the backbone
torsion angles is significantly increased leading tomuchmore efficient
sampling [55,56].

Histograms of the backbone torsion angles Φ and Ψ were
calculated for all amino acids. Some of them exhibit a narrow
distribution, while others are distributed over a wide range of angles
or show several separate maxima. Two typical examples are shown in
Fig. 2. In general, most torsion angles show a rather large variation
indicating that the structure of the backbone is rather flexible. To
obtain a better picture of the flexibility and to allow for a
straightforward comparison with the experimentally determined
values, 2D Ramachandran diagrams of the Φ, Ψ torsion angles were
calculated for the five inner amino acids (Fig. 3). These diagrams
exhibit several maxima for all five amino acids also indicating a
flexible backbone. However, most of the structural heterogeneity is
observed for the N-terminal amino acids while the structure of the C-
terminus is better defined. This is in agreement with the previous
experimental observation that the amino acids at the C-terminus
show larger deviations from the NMR isotropic chemical shift value
[24] indicating that less averaging occurs for them. Additionally, the
comparison of the torsion angles from simulation and experiment
shows very good agreement. The major clusters from the TALOS
predictions (which are indicated by symbols in Fig. 3) with one
exception always overlap with the maximum observed in the
simulations. The only exception of this is Cys 181, which is not very
surprising as one of the lipidmodifications is attached to its side chain.
The very strong hydrophobic interaction of this lipid modification
with the membrane most likely shifts the energy minimum to a
different set of torsion angles, which cannot be predicted by TALOS as
information neither about the lipid modifications nor the membrane
environment is included in its database approach. Using the HNCH
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experiment [41], Φ torsion angles were also determined experimen-
tally (data not shown). The two values, which could be unambigu-
ously assigned to Met 182 (−91°±31°) and Leu 184 (−100°±20°),
convincingly overlap with the Ramachandran diagrams from the
simulation.

The observation of several maxima in the Ramachandran diagrams
can be interpreted in two ways: either the backbone is very flexible in
general, e.g. with little or no correlation between the torsional states
of the various amino acids, or a small set of different structures exists.
If the latter was true individual amino acids would change their
torsion angles collectively, while they would be independent in the
first case. To distinguish between these two possibilities further inter-
residue Ramachandran diagrams were calculated, where any Φ or Ψ
angle was correlated with any Φ or Ψ angle of any amino acid. Two
types of these inter-residue Ramachandran diagrams were calculated:
(i) The inter-residue Ramachandran diagram was predicted from the
1D histograms of the two torsion angles by simple multiplication (ref.
Fig. 2), which explicitly includes the assumption that they are
uncorrelated. (ii) The inter-residue Ramachandran diagram was
calculated directly from the simulation, which would contain
correlations between the amino acids whose torsion angles are
analyzed. If the two types of diagrams are the same for a given pair of
torsion angles these angles are uncorrelated while they are correlated
if the diagrams differ considerably.

Two examples of this analysis are shown in Fig. 4, where the inter-
residue Ramachandran diagrams that were predicted assuming
uncorrelated torsion angles are shown in Fig. 4A and D, while the
ones directly calculated from the simulation are shown in Fig. 4B and
E. The differences A–B and D–E are shown in Fig. 4C and F,
respectively. As can be seen from this example the Φ of Leu 184 and
the Ψ of Pro 185 are virtually uncorrelated. In contrast, the Φ of Cys
181 depends strongly on the Φ of Met 182. When the Φ of Met 182 is
about 60° the Φ of Cys 181 is almost always about −160°, while it is
about−70° when theΦ of Met 182 is negative. The same analysis was
conducted for all possible combinations of torsion angles and a
correlation score calculated. The correlation score is defined as the
sum of the absolute values of all data points in the difference diagram
(for examples see Fig. 4C and F) and has a theoretical maximum of 2.0
Fig. 3. Ramachandran diagrams of the five inner amino acids Cys 181 (A), Met 182 (B), Gly
temperature bath (303 K) of the replica exchange simulation. All diagrams exhibit several m
the three structures from Fig. 1B (green triangles), C (blue squares), and D (red circles) are
if there is no overlap between the two types of inter-residue
Ramachandran diagram. However, in reality there will always be
considerable overlap, which leads to scores on the order of 0.5 to 1.0
for intra-residue Ramachandran diagrams, which are typically
strongly correlated. The correlation scores for the entire backbone
are shown in Fig. 5. From this, it is evident that there is strong
correlation between the different torsion angles at the N-terminus of
the backbone (Cys 181 andMet 182 in particular), while they are only
loosely correlated in the C-terminus. This is partly due to the fact that
some torsion angles at the C-terminus only exhibit a narrow
distribution of values and, therefore, do not show structural variability
at all.

The strong correlation between the torsions of the N-terminal
amino acids clearly indicates that the observed structural flexibility is
due to the existence of a number of different structures, which
exchange at the higher temperatures of the replica exchange
simulation. To investigate the present structures a cluster analysis of
all torsion angle time series was performed for the Ras backbone
(Fig. 6). In total 17 clusters (of which 5 were below 0.3% probability)
were found and the two major conformations account for ∼34% and
∼26% of the simulation time (all others were below 10%). The
difference between these two structures is mainly located at the
N-terminus of the peptide and in particular amino acids Cys 181 and
Met 182 seem to play the major role in defining the structure of the
peptide. Some of the minor conformers agree with the most common
conformer in these crucial amino acids and only differ in the
C-terminal part of the peptide that is characterized by uncorrelated
structural flexibility (see Fig. 5). If these minor conformers are
assumed to be merely fluctuations of the most common conformer
the two major conformers constitute ∼77% of all the structures
observed in the simulation.

In Fig. 7, the average structures of the two major conformers are
aligned with respect to the experimental structure from Fig. 1D. This
comparison clearly shows that the experimental structure (grey) is
very similar to the average structure of cluster 2 (blue), while the
structure of cluster 1 (red) exhibits a kink in Met 182, which leads
to a different conformation of the N-terminus. At the same time, the
conformation of Cys 181 is also different between cluster 1 and
183 (C), Leu 184 (D), and Pro 185 (E) of the peptide. Data were taken from the lowest
axima indicating the structural flexibility of the peptide backbone. The torsion angles of
also indicated.



Fig. 4. Schematic representation of the correlation analysis. Inter-residue Ramachandran diagrams predicted from the one dimensional histograms of two torsion angles assuming no
correlation between them are shown for the Leu 184Φ and Pro 185Ψ pair (A) and for the Cys 181Φ andMet 182Φ pair (D). The corresponding diagrams evaluated directly from the
lowest temperature bath (303 K) of the replica exchange simulation are shown in B and E, respectively. Subtraction of the two types of diagrams (results shown in C and F) allows
assessing if the two torsion angles are correlated. If the subtraction diagram is very flat as shown in C the two torsion angles are uncorrelated, while they are correlated if the
subtraction diagram shows pronounced minima and maxima as shown in F.
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cluster 2. This is most likely due to the lipid modification that would
otherwise not be well embedded into the bilayer while the polar
NH2 group at the N-terminus would penetrate the hydrophobic
Fig. 5. Summary of the correlation analysis for the entire Ras backbone. The correlation
scores are color coded and shown for each torsion angle pair. Torsion angle pairs
belonging to the same amino acid which are naturally highly correlated are indicated by
black × symbols.

Fig. 6. Result of the cluster analysis of the torsion angle time series from the lowest
temperature bath (303 K) of the replica exchange simulation. The cluster analysis was
performed for all four peptides together and a total of 17 clusters was found of which 12
are shown (the other 5 clusters are below 0.3% probability). The two major clusters
constitute 60% of all structures while all other clusters remain below 10%. Clusters 3, 5,
8, and 12 are identical to cluster 1 in the torsions of Cys 181 and Met 182, which are
most important for the structure.



Fig. 7. Comparison of the experimentally predicted backbone structure from Fig. 1D
(grey) and the average backbone structures of the two major clusters (cluster 1: red,
cluster 2: blue). The C-terminus of the peptide is on the left side and the orientation of
the membrane normal is indicated by the grey arrow in the lower right of the picture.
The hydrophobic side chains of Met 182 and Leu 184 are shown in black for the
experimental structure, orange for cluster 1, and cyan for cluster 2 (Leu 184 is in the
middle of the picture while Met 182 is closer to the right side) and the lipid
modification carbons are shown in a ball and stick representation. It is noteworthy that
the lipid modifications are highly flexible which is indicated for one of them by the cone
angle of its slow motion.

Fig. 8. Comparison of the DIPSHIFT order parameters determined from simulation
(white) and experiment (grey). They were evaluated from the lowest temperature bath
(303 K) of the replica exchange simulation and determined experimentally at T=303 K
using the DIPSHIFT method at a MAS frequency of 3.5 kHz respectively. The
experimental DIPSHIFT order parameters for Cys 181 and Cys 186 are identical because
they could not be distinguished in the NMR spectrum.
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region of the bilayer. In fact the average structures of the two
clusters feature a topology, in which the hydrophobic side chains of
Met 182 and Leu 184 and also the side chains of Cys 181 and Cys
186, to which the lipid modifications are attached, are all facing one
side of the peptide, which is always facing the membrane in the MD
simulations. It is interesting to note that the Leu 184 side chain is
pointing somewhat sideways, while all other hydrophobic moieties
are almost perfectly aligned but the reason for this alignment
remains unclear from the investigations presented here. This is in
very good agreement with a previously obtained model of the
topology of the peptide and this observation was actually used to
identify the structure in Fig. 1D as the one, which is most likely
correct because the other two structures (Fig. 1B and C) do not
exhibit this topology [30].

Nevertheless, these two structures were aligned with respect to
the average structures of cluster 1 and 2 as well (data not shown) but
no good agreement could be found. The reason for this is the
collectivity of structural changes in the torsion angles of Cys 181 and
Met 182, which means that a change in Met 182 must always be
accompanied by a change in Cys 181. While TALOS was able to
correctly predict diverse conformations inMet 182 it could not predict
the diversity in Cys 181 and, therefore, led to these two structures not
observed in the simulation.

3.2. Dynamical flexibility of the Ras backbone

An interesting dynamic behavior of the peptide is already
suggested from its structural variations and flexibility. In addition,
former investigations revealed that the Ras lipid modifications are
characterized by large amplitude motions [25,61,62]. Since the
dynamics of the membrane anchor is most likely of high importance
for the binding to the highly flexible membrane and perhaps even for
its subcellular location additional solid-state NMR experiments and
two independent conventional MD simulations were conducted. In
particular, the dynamic fluctuations of the Cα–H bond were
investigated as they are directly connected to the peptide backbone
and experimentally accessible.

The DIPSHIFT order parameters of this bond were measured by
determination of the motionally averaged 13C–1H dipolar coupling
and are shown in Fig. 8 (grey bars). The absolute values for these order
parameters are very low indicating large amplitude motions in the
backbone of the Ras membrane anchor. For the five inner amino acids,
a clear trend is observed, in which the order parameters rise
monotonically towards the C-terminus, which also exhibited less
structural heterogeneity in the Ramachandran diagrams. Compared to
values obtained for full-length N-Ras the ones obtained here are
somewhat smaller, which can be explained by the missing soluble
part of the protein that dampens themotions of themembrane anchor
if present [25]. Interestingly, the order parameters determined for Cys
181/186 (which cannot be distinguished due to signal overlap), to
which the lipid modifications are attached, are the lowest for the
whole peptide which is likely connected to the high amount of
flexibility observed for the lipid modifications [61,62]. In addition, the
order parameter for Met 182 is almost as low, leading to the result
that the DIPSHIFT order parameters of the amino acids, which are
most strongly correlated in the MD simulation are the lowest in the
whole backbone.

The DIPSHIFT order parameters were also calculated from the
replica exchange simulation and are shown in Fig. 8 as well (white
bars). It is important to note that the calculation is different from
calculating 2H NMR order parameters since the average orientation of
the C–H bond vector is in general not perpendicular to the membrane
normal. Therefore, the complete tensor had to be considered and
averaged over all frames. The comparison of the obtained order
parameters shows reasonable agreement with the experiment in
particular for the five inner amino acids, where even the general trend
is reproduced rather well. The observation that the order parameters
from the simulation are generally higher than the ones measured
experimentally likely arises from the fact that DIPSHIFT order
parameters are also sensitive to motions with correlation times
that are much longer than the total time of simulations conducted in
this article.

To assess the backbone dynamics in more detail, 13C NMR
relaxation times measured as a function of temperature of the sample
are shown in Fig. 9. Generally, the T1 relaxation times decrease with
increasing temperature while the T2 relaxation times increase, which



Fig. 9. Semilogarithmic representations of the T1 and T2 relaxation times in dependence
on the inverse temperature for Gly 180 (A), Cys 181/186 (B), Met 182 (C), Gly 183 (D),
Leu 184 (E), and Pro 185 (F). Experimental values are indicated by black squares for T1
and white circles for T2 while the theoretical fits using Eqs. (1) and (6) are shown as
solid and dashed lines respectively (for each amino acid the T1 and T2 relaxation times
were fitted simultaneously). The relaxation times obtained from the conventional MD
simulations at 313 K are indicated by black triangles for T1 and white triangles for T2.

Table 2
Correlation times τs in ns for the slow motions of the amino acids of the membrane
bound lipid modified Ras peptide.

Amino acid Relaxation measurements MD

283 K 298 K 310 K 323 K 313 K

Gly180 699.5 250.9 118.7 56.16 29.08
Cys181/186 3914 1288 571.6 253.9 146.3
Met182 4505 1471 649.9 287.2 242.9
Gly183 821.2 292.2 137.4 64.64 64.88
Leu184 3622 1196 532.6 237.3 119.6
Pro185 3912 1287 571.4 253.8 49.60

The values for the temperatures 283 K, 298 K, 310 K, and 323 K were obtained by
application of a modified Lipari–Szabomodel to experimentally measured, temperature
dependent T1 and T2 relaxation times while the values at 313 K were obtained from the
correlation functions observed in the conventional MD simulations.
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is typical for motions not in the extreme narrowing limit. By fitting the
data with a modified Lipari–Szabo approach [44], correlation times of
the motions could be determined. In this model, the spectral density
contains three terms describing two independent anisotropic motions
and the overall reorientation of the peptide. Here however it was
assumed that the overall isotropic reorientation of the peptide is
inhibited by the presence of the membrane and the corresponding
correlation time τR was set to infinity. The anisotropy of the fast and
slow motions is represented in the order parameters Sf and Ss. To
reduce the number of fitting parameters it was assumed that the
experimentally measured DIPSHIFT order parameter is influ-
enced by both motions and can therefore be expressed as
SDIPSHIFT= Sf× Ss [44]. For the temperature dependence of the
correlation times an Arrhenius behavior was assumed, which is
modeled in the activation energies of the two motions. This leaves
three parameters for the fit, one order parameter and the two
activation energies. The resulting fits reproduce the data verywell and
the resulting correlation times for the fast and slow motions of the
peptide are summarized in Tables 1 and 2. At room temperature the
correlation times for the fast motions τf are on the order of 1 ns while
Table 1
Correlation times τf in ns for the fast motions of the amino acids of the membrane
bound lipid modified Ras peptide.

Amino acid Relaxation measurements MD

283 K 298 K 310 K 323 K 313 K

Gly180 3.954 1.841 1.053 0.603 1.216
Cys181/186 2.229 1.068 0.624 0.365 7.550
Met182 2.140 1.028 0.601 0.352 17.39
Gly183 4.025 1.872 1.070 0.612 6.788
Leu184 2.080 1.000 0.586 0.343 6.133
Pro185 1.957 0.944 0.554 0.325 3.656

The values for the temperatures 283 K, 298 K, 310 K, and 323 K were obtained by
application of a modified Lipari–Szabomodel to experimentally measured, temperature
dependent T1 and T2 relaxation times while the values at 313 K were obtained from the
correlation functions observed in the conventional MD simulations.
they are on the order of hundreds of ns for slow motions of the
peptide τs. Of course, T1/T2 relaxation times are not sensitive on this
timescale and the large values for the correlation time simply indicate
that the overall motions of the peptide are very slow as there is no
isotropic tumbling at the membrane surface. The results are in good
agreementwith several previous investigations of the dynamics of the
Ras membrane anchor. Previously, correlation times of Gly 183 were
determined in the full-length Ras protein [25]. The correlation times
obtained for the peptide and the protein are very close for the both
motions indicating that the internal dynamics are virtually unin-
fluenced by the presence of the soluble part of the protein. Other
experimental investigations on the peptide were conducted using 2H
NMR and analyzed with a more complex model of the peptide
dynamics. In addition, there the data was also influenced by the
motions of the of the lipid modifications due to the different location
of the label. Nevertheless, the obtained rotational diffusion constants
of 4.5×105 s−1 for rotation perpendicular and 2.1×109 s−1 for
rotations parallel to the membrane normal [61] correlate remarkably
well to the correlation times observed here.

From the two conventional MD simulations correlation functions
of the Cα–H bond vectors were also calculated, which allows direct
comparison to the experimental values by fitting with a double
exponential [59]. The resulting correlation times for the fast and slow
motions are summarized in Tables 1 and 2, respectively. Considering
the relatively simple model the agreement with the experimentally
determined values is very good, which is particularly remarkable for
the slowmotions since the experimental values are on the order of the
simulation length.

A model free comparison of the backbone dynamics in simulation
and experiment is allowed by comparison of the T1 and T2 relaxation
times. They were extracted from the simulations by Fourier
transformation of the correlation functions and subsequent sampling
of the resulting spectral densities at the frequencies 0, ωH−ωC, ωC,
ωH, and ωH+ωC. The obtained relaxation times are always relatively
close to the experimental values (typically within a factor of 2.5),
which is particularly surprising for T2 as this heavily depends on J(0)
which is very sensitive to motions with long correlation times.

4. Discussion

According to the most recent structural model of the N-Ras
membrane anchor, the peptide backbone is located in the lipid water
interface of the host membrane with the lipid modifications and
hydrophobic side chains penetrating the hydrocarbonmembrane core
[29,30,62]. The lipid modifications are extremely flexible [61,62] and
ongoing research in our group shows that they adopt their length to
the surrounding lipid matrix [76].

The main goal of the investigation presented here was a detailed
analysis of the backbone structure and dynamics of the lipid modified
membrane anchor of the human N-Ras protein. A combination of
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solid-state NMR and MD simulations was used to achieve this goal.
Since folding and transitions between several existing structures is
too slow for conventional MD simulations a replica exchange
technique was used to improve the sampling of conformations
while two subsequent 300 ns simulations allowed investigation of
the peptide dynamics. The combination of simulation and experiment
is particularly powerful as both approaches complement each other
very well. While meaningful MD simulations rely on experimental
data to guide simulation setup and analysis and to validate the
obtained results, many quantities are much easier to extract from
simulations than from experiments. However the application of NMR
techniques also offers distinct advantages as it allows the investiga-
tion of phenomena exceeding the time and length scales of MD
simulations.

With this combined approach a set of structures was extracted
from the replica exchange simulation and using a cluster analysis of
the torsion angles two of them were identified as major conformers
while all others populated less than 10% of the simulation time. One of
the previously experimentally determined structures was very similar
to the second most common structure of the simulation and could be
refined. However, the dominant structure found in the simulation did
not agree with the experimental model. In addition, it could be shown
that these structures are not very rigid and exhibit a rather large
conformational flexibility. This is also supported by a solution NMR
investigation on full-length farnesylated H-Ras in the absence of
membranes or micelles, which revealed that the residues that
followed Asn 172 experience fast internal motions and are con-
formationally flexible [63].

From this and previous work, there are many indications that the
observed structure of the Ras C-terminus is shaped by the membrane
environment of the peptide, which makes it remarkable that TALOS
was able to correctly predict the torsion angles for all amino acids
besides Cys 181. For instance, the main difference observed in the two
most common structures, which is located in Cys 181 and Met 182,
can largely be explained by the location of the peptide backbone in the
interface of a very polar and a very nonpolar region. We showed that
these two amino acids change their conformation collectively and
closer inspection of this conversion reveals that otherwise the lipid
modifications would not be facing the same side of the peptide and
would, therefore, be exposed to the surrounding solvent. Investiga-
tions on the thermodynamics of membrane binding of lipid modified
peptides showed, however, that this would be highly unfavorable as
each CH2 group contributes −3.35 to −3.45 kcal/mol to ΔG0 upon
transfer from water to a membrane environment [64-66]. In addition,
the polar NH2 group at the N-terminus could penetrate the
hydrocarbon region of the host membrane if Cys 181 and Met 182
would not change their structure in conjunction, which is also highly
unfavorable. In fact, throughout the simulation, we observe that the
lipid modifications as well as the hydrophobic side chains of Met 182
and Leu 184 are facing the same side of the peptide and penetrate the
hydrocarbon core of the membrane, while the backbone amide
protons are preferentially located in the lipid water interface and only
rarely get in contact with the lipid acyl chains, all in excellent
agreement with several experimental studies [29,30,61,62]. We
therefore hypothesize that the observed structures are mainly shaped
by the biophysical interactions of the individual moieties of the
peptide with the complex environment in the lipid-water interface of
a biological membrane, which features hydrophilic, hydrophobic, and
hydrogen bonding groups in a very anisotropic manner. In turn, the
resulting topology renders one face of the peptide very hydrophobic
resulting in strong binding to the membrane interface.

Since these biophysical interactions are unspecific in contrast to
intramolecular hydrogen bonds, which often stabilize backbone
structures, a rather large amount of structural flexibility is observed,
which also raises questions about the dynamics of the peptide
backbone. Despite the existence of defined structures, which
constitute about 60% of the simulation time rather large fluctuations
are observed throughout the peptide backbone. The amino acids at
the N-terminus undergo collective structural changes, while the
amino acids at the C-terminus fluctuate mostly uncorrelated as
revealed by the Ramachandran diagrams, which always exhibit
several maxima. In addition, calculation of RMSD values for all
structures belonging to either of the two most common structures
(data not shown) shows that the hydrophobic side chains of Met 182
and Leu 184 exhibit a substantial degree of flexibility comparable to
the top of the lipid modifications which have been characterized as
extremely flexible in previous experimental and computational
studies [30,61,62].

To assess the dynamics of the peptide backbone in more detail,
DIPSHIFT order parameters and 13C NMR relaxation times were
determined and analyzed using a modified Lipari-Szabo approach. In
general, the DIPSHIFT order parameters are very low throughout the
backbone indicating large amplitude motions. This is partly due to the
fact that themembrane anchor is not folded in a single rigid secondary
structure motif. Interestingly, the DIPSHIFT order parameters
reported for the full-length protein are on average about twice as
high [25] indicating that the motions of the membrane anchor are
somewhat dampened when the soluble part of the protein is present.
Nevertheless, the DIPSHIFT order parameters of themembrane anchor
even for the full-length protein are rather low in general when
compared to other membrane proteins [3,25,67,68]. Interestingly the
soluble part of the protein does not seem to influence the lipid
modifications since very similar order parameters are reported for
them in the absence and in the presence of the soluble part of the
protein [25,30,62].

It is also interesting to compare the DIPSHIFT order parameters of
the two cysteins, which are lipid modified. In the full-length protein,
the order parameter for Cys 181, which was palmitoylated, was also
comparatively low, while the order parameter of Cys 186, which was
farnesylated, was the highest [25]. This difference was attributed to
the difference in lipid modification mobility. This observation was
important insofar as very little is known about farnesyl lipid
modifications. It is reported that its free energy of transfer from
water to a lipid bilayer is comparable to that of a myristoyl chain [69]
and a few investigations suggested that it is mostly extended [70] and
does not influence the chain order of the host membrane [71], which
agreed with the observation of a higher order parameter at the
cystein, to which the farnesyl chain is attached. In this study, a peptide
was used, that featured hexadecylations at both cysteins, which are
very similar to a palmitoyl chain but very different from a farnesyl
moiety. Although Cys 181 and 186 overlap in the spectrum and we
therefore could only measure a mean order parameter for them, this
order parameter is so low that it is impossible that the order
parameter of Cys 186 is the highest of all amino acids as it was the case
in the full-length protein. This supports the interpretation that the
higher order parameter observed for Cys 186 in the full-length protein
is due to the farnesyl lipid modification, which is less mobile than
hexadecylations.

Another interesting result of the DIPSHIFT order parameter
analysis is that Cys 181 and Met 182 whose conformations are highly
mobile and most strongly correlated in the replica exchange
simulation exhibit some of the lowest order parameters. This
demonstrates the high flexibility of this part of the backbone and
indicates that the transition between the two structures most
commonly observed in the simulations must be faster than the
timescale of the DIPSHIFT NMR experiment, which is on the order of
tens of microseconds.

To obtain more detailed information on the correlation times of
motion for each amino acid, T1 and T2 relaxation times weremeasured
experimentally, interpreted in terms of a model free approach and
compared to two independent conventional MD simulations of 300 ns
length each. Overall, experiment and simulation show very good
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agreement. Analysis of the experimental relaxation times using a
modified Lipari–Szabo approach [44] describing two independent
anisotropic motions of the peptide yields two correlation times. The
obtained correlation times are very similar for all amino acids, where
the fast motions are on the order of a few ns suggesting that these are
internal motions such as isomerizations while the slow motions are
on the order of hundreds of ns most likely describing overall
reorientations of the peptide.

In general, the Ras membrane anchor is remarkably flexible and it
is worthwhile to speculate about the biological relevance of this
finding. As mentioned previously, the major differences in the
individual Ras isoforms are located in the hypervariable region that
includes the membrane anchor, which must, therefore, account for
the differences in function. Previously, it has been shown that the
localization of Ras at themembrane is crucial for its biological function
[72] and it was shown by atomic force microscopy [73] and also
ongoing investigations in our laboratory that human N-Ras tends to
accumulate at the boundaries of membrane domains [76]. This region
is characterized by complex dynamics [74] and associated with a line
tension [75]. Therefore, from a biophysical perspective it can be
understood that human N-Ras accumulates at these phase boundaries
since due to its own complex dynamics it perfectly fits this
environment and might in addition even lead to a reduction of the
unfavorable line tension.

In summary, it can be concluded that the backbone of the
membrane anchor of the human N Ras protein is characterized by a
large degree of structural flexibility. Two dominant structures were
found, which account for a combined ∼60% of the simulation time
and which are shaped by the biophysical interactions with the
membrane. The backbone torsion angles of the amino acids Cys 181
and Met 182 are highly correlated, which is most crucial for the
conformational flexibility of the Ras membrane anchor. All structures
feature the same topology, in which the hydrophobic lipid modifica-
tions and side chains face one side of the peptide and penetrate the
hydrocarbon core of the membrane, while the polar peptide back-
bone is located in the lipid water interface. The dynamics of the
backbone is characterized by large amplitude motions which occur
over a rather broad window of correlations times (up to hundreds of
nanoseconds). Comparison to values obtained for the full-length
Ras protein shows that its soluble part somewhat reduces the
amplitude of motions of the membrane anchor but has little
influence on their timescale. This work shows that combining
solid-state NMR and MD simulations provides a very powerful
approach to investigations on structure and dynamics of membrane
proteins yielding a wealth of information not accessible by applying
either method alone. In particular, the MD has shown how the
torsion angles in the backbone are correlated, an information that
cannot be revealed by TALOS alone. However, additional constraints
such as NOEs or dipolar couplings could also reveal these correlations
experimentally. Most importantly, we showed that the N-Ras
membrane anchor exists in a dynamic ensemble of structures
opposed to the case of single “frozen” structure as often obtained
by various structural biology methods and in particular the
correlation between conformations of different amino acids proved
to be crucial to define the observed structures.
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