20 research outputs found

    No evidence of increased mutations in the germline of a group of British nuclear test veterans

    Get PDF

    Ligand selectivity in stabilising tandem parallel folded G-quadruplex motifs in human telomeric DNA sequences

    Get PDF
    Biophysical studies of ligand interactions with three human telomeric repeat sequences (d(AGGG(TTAGGG)n, n = 3, 7 and 11)) show that an oxazole-based ‘click’ ligand, which induces parallel folded quadruplexes, preferentially stabilises longer telomeric repeats providing evidence for selectivity in binding at the interface between tandem quadruplex motifs

    Cholesterol is required for transcriptional repression by BASP1

    Get PDF
    Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1–cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression

    Population genomics of the critically endangered kākāpō

    Get PDF
    Summary The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species

    Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos.

    Get PDF
    addresses: Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK. [email protected]: Journal Article; Research Support, Non-U.S. Gov'tThis is an open access article that is freely available in ORE or from the publisher's web site. http://pubs.acs.org/doi/abs/10.1021/es401758d. Please cite the published version© 2013 American Chemical SocietySupporting Information: Further details on the methodology and results for the characterization of the silver particles used for the exposures, mortality curves, sequencing analysis, and a number of supporting figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org.Silver nanoparticles cause toxicity in exposed organisms and are an environmental health concern. The mechanisms of silver nanoparticle toxicity, however, remain unclear. We examined the effects of exposure to silver in nano-, bulk-, and ionic forms on zebrafish embryos (Danio rerio) using a Next Generation Sequencing approach in an Illumina platform (High-Throughput SuperSAGE). Significant alterations in gene expression were found for all treatments and many of the gene pathways affected, most notably those associated with oxidative phosphorylation and protein synthesis, overlapped strongly between the three treatments indicating similar mechanisms of toxicity for the three forms of silver studied. Changes in oxidative phosphorylation indicated a down-regulation of this pathway at 24 h of exposure, but with a recovery at 48 h. This finding was consistent with a dose-dependent decrease in oxygen consumption at 24 h, but not at 48 h, following exposure to silver ions. Overall, our data provide support for the hypothesis that the toxicity caused by silver nanoparticles is principally associated with bioavailable silver ions in exposed zebrafish embryos. These findings are important in the evaluation of the risk that silver particles may pose to exposed vertebrate organisms.Natural Environment Research Council (NERC)NERC Biomolecular Analysis FacilityUK Environment AgencySystems Biology Seed fund, University of Exete

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Intent to Speed: Cyclical Production, Topicality and the 1950s Hot Rod Movie

    Get PDF
    This essay tracks the emergence, consolidation and dissolution of the short cycle of hot rod movies that was exhibited from 1956 to 1958. The aim is to explore this cycle’s connection to topical issues and show how filmmakers used timely subjects. The essay examines the media frenzy that whirled around the subculture of hot rodding and the sensationalist marketing strategies used to promote the films, which are linked to exhibition in drive-in theatres. There is an extraordinary mismatch between the thrills promised by the sales pitch for the films and the pedestrian action of the films themselves. While showing intent to speed, few examples of the cycle actually delivered on the promise to thrill. Finally, questions of turnover and the speed of production are considered. What draws these areas of interest together is a series of enquiries about what made hot rods and hot rod culture useful to film producers and audiences
    corecore