1,069 research outputs found

    Síntesis de nanopartículas asistida por microondas en condiciones batch

    Get PDF
    The development of intensified processes for the preparation of novel catalytically active nanodimensional materials is a captivating challenge getting more attention day-by-day.1, 2 In fact, nanoparticle systems offer the possibility of combining the high activity of homogenous catalysts with the better recoverability of heterogeneous ones, opening to unlimited application in the chemical industry. The microwave-assisted technique – recognized as one of the most innovative methods for process intensification – makes it possible to both synthesize and test new nanocatalysts exploiting the unique characteristics of microwave heating. These characteristics include reduced reaction times, minimized (or suppressed) side reactions, highly reproducibility, enhanced yields and selectivity as well as selective heating and magnetic loss heating.3-5 The PhD thesis presented has been developed thanks to the experience of the research group FQM-383 (NanoVal) in nanoscale chemistry, heterogeneous catalysis and waste/biomass valorization. More in details, the research studies of the PhD thesis demonstrated the potentiality of microwave-assisted techniques for the development of efficient nanocatalytic systems specifically designed for photochemical applications, fine chemical synthesis and biofuel production.6-10 Most important results obtained during the PhD Thesis have been described in three research articles. In addition, a comprehensive minireview has been included in the introduction section in order to highlight the primary importance of nanocatalysts for the production of biofuels. The first research article, “Microwave-assisted valorization of pig bristles: towards visible light photocatalytic chalcocite composites”, discloses the preparation of nano-Cu2S carbon composites via a fast and low-toxicity microwave-assisted method.11 The synthesis was carried out employing ethylene glycol as solvent, copper chloride as metal precursor and waste pig bristles as sulfur and carbon source, avoiding the use of any toxic sulfur precursor (e.g. H2S, thiourea). The high microwave adsorption and high viscosity of ethylene glycol allowed for the preparation of homogeneous Cu2S carbon composites within a few minutes (4 minutes at 200°C operating in a multimode microwave oven). By contrast, conventional heating needed longer reaction times and formed inhomogeneous, low-active Cu2S carbon material. The so-produced composite has been characterized by X-ray diffraction (XRD), nitrogen physisorption (BET model), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX) and UV-Vis spectroscopy. Cu2S carbon composite has been successfully used for the photo degradation of methyl red, a common pollutant dye, under visible LED light irradiation, leading to ca. 40% of degradation within 3 hours. In the second research article, “Heterogeneously Catalyzed Synthesis of Imidazolones via Cycloisomerizations of Propargylic Ureas Using Ag and Au/Al SBA-15 Systems”, a study of environmentally friendly paths for the cycloisomerization of propargylic ureas has been explored.12 Specifically, different nanogold and nanosilver catalsyts have been prepared by supporting the metal nanoparticles over mesoporous silica (AlSBA-15) through mechanochemistry and microwave-assisted approaches. The catalysts have been used as heterogeneous systems in the microwave assisted synthesis of a library of imidazolones via a sequential study aimed to shift the reaction to greener operative conditions. The employed systems avoided the utilization of strong bases, such as NaOH, or expensive homogeneous metal catalysts. The best conditions have been combined in order to catalyse the cycloisomerization of propargyl ureas using only water as solvent and promoter of the reaction. The results demonstrated that the selected solvent highly influenced the reactions, where toluene promoted N-cyclization reactions, ethanol favoured the cyclization of propargylic ureas characterized by more electron withdrawing groups and water favoured the cyclization of propargylic ureas containing electron donor compounds in the structure. The third research article, “Efficient and Environmentally Friendly Microwave-Assisted Synthesis of Catalytically Active Magnetic Metallic Ni Nanoparticles” describes the preparation of pure magnetic metallic nickel by a simple and fast microwave-assisted method using a monomode microwave reactor (CEM Discover, CEM Corp.).13 The synthesis has been carried out using nickel chloride as metal precursor and a mixture of ethylene glycol and ethanol (or isopropanol) as solvent and reducing agent. A fine study carried out varying the molar ratio of ethylene glycol and ethanol in function of the reaction temperature has highlighted the reaction conditions where the reduction of nickel occurred. The best performance (71% yield) has been achieved operating at 250°C for 5 minutes under microwave irradiation. The mechanism of reaction for oxidation of ethylene glycol and reduction of Ni2+ has been demonstrated by gas chromatography–mass spectrometry (GC-MS) analysis, while the behaviour of the mixture and its bubble point in function of the recorder pressure has been simulated by PRO/II software (Schneider Electric Group). The nanoparticles have been analysed by X-ray diffraction (XRD), scanning emission microscopy (SEM), transmission electron microscopy (TEM) and magnetic mass susceptibility. The surface area has been determined by nitrogen physisorption (BET model). The nanoparticles have showed good activity in the hydrogenolysis of benzyl phenyl ether (BPE), a lignin model compound, with a maximum conversion of 24%, and reusability up to 5 cycles without sensible loss of activity.El desarrollo de procesos destinado a la preparación de nuevos materiales con dimensiones nanométricas y, a su vez, catalíticamente activos, es un desafío fascinante que llama cada vez más la atención1, 2. De hecho, los sistemas compuestos de nanopartículas ofrecen la posibilidad de combinar la alta actividad de los catalizadores homogéneos con la mejor capacidad de recuperación de los heterogéneos, ofreciendo de esta manera un número ilimitado de aplicaciones en la industria química. La técnica asistida por microondas, reconocida como uno de los métodos más innovadores para la intensificación de procesos, permite sintetizar y probar nuevos nanocatalizadores que exploten las características únicas del calentamiento por microondas. Estas características incluyen tiempos de reacción reducidos, reacciones secundarias minimizadas (o suprimidas), alta reproducibilidad, rendimientos y selectividad mejorados, así como calentamiento selectivo y calentamiento por pérdida magnética.3-5 La presente tesis doctoral se ha desarrollado gracias a la experiencia del grupo de investigación FQM-383 (NanoVal) en química a nanoescala, catálisis heterogénea y valorización de residuos/biomasa. Más en detalle, los estudios de investigación de la tesis doctoral demostraron la potencialidad de las técnicas asistidas por microondas para el desarrollo de sistemas nanocatalíticos eficientes diseñados específicamente para aplicaciones fotoquímicas, síntesis química fina y producción de biocombustibles.6-10 Los resultados más importantes obtenidos durante la tesis doctoral se han descrito en tres artículos de investigación. Además, en la sección de introducción, un apartado va dedicado a resaltar la gran importancia de los nanocatalizadores en la producción de biocombustibles. El primer artículo de investigación, Microwave-assisted valorization of pig bristles: towards visible light photocatalytic chalcocite composites”, describe la preparación de compuestos nano-Cu2S de carbono mediante un método asistido por microondas rápido y de baja toxicidad.11 La síntesis se llevó a cabo empleando etilenglicol como disolvente, cloruro de cobre como precursor de metal y pelos de cerdo de desecho como fuente de azufre y carbono, evitando el uso de cualquier precursor de azufre tóxico (por ejemplo, H2S, tiourea). La alta adsorción por microondas y la alta viscosidad del etilenglicol permitieron la preparación de compuestos de carbono Cu2S homogéneos en pocos minutos (4 minutos a 200 ° C trabajando en un horno de microondas multimodo). Por el contrario, el calentamiento convencional necesitó tiempos de reacción más largos, dando como resultado un material de carbono Cu2S poco homogéneo y poco activo. El compuesto así producido se ha caracterizado por difracción de rayos X (XRD), fisisorción de nitrógeno (modelo BET), microscopía electrónica de barrido / espectroscopía de rayos X dispersiva de energía (SEM-EDX) y espectroscopía UV-Vis. El compuesto de carbono Cu2S se ha utilizado con éxito para la foto degradación del rojo de metilo, un colorante contaminante común, bajo irradiación de luz LED visible, que conduce a ca. 40% de degradación en 3 horas. En el segundo artículo de investigación, “Heterogeneously Catalyzed Synthesis of Imidazolones via Cycloisomerizations of Propargylic Ureas Using Ag and Au/Al SBA-15 Systems”, se han estudiado diversos caminos ecológicos para la cicloisomerización de ureas propargílicas12. Específicamente, diferentes nanocatalizadores de oro y plata se han preparado soportando las nanopartículas metálicas sobre sílice mesoporosa (AlSBA-15) utilizando mecanoquímica y radiación microondas. Los catalizadores se han utilizado como sistemas heterogéneos en la síntesis asistida por microondas de una biblioteca de imidazolonas a través de un estudio secuencial destinado a cambiar la reacción a condiciones operativas más ecológicas. Los sistemas empleados evitaron la utilización de bases fuertes, como NaOH, o catalizadores metálicos homogéneos y caros. Las mejores condiciones se han combinado para catalizar la cicloisomerización de las propargilureas utilizando solo agua como disolvente y promotor de la reacción. Los resultados demostraron que el disolvente seleccionado tiene una gran influencia en las reacciones, en concreto el tolueno promovió las reacciones de N-ciclación, el etanol favoreció la ciclación de las ureas propargílicas caracterizadas por más grupos de extracción de electrones y el agua favoreció la ciclación de la urea propargílica que contiene compuestos donadores de electrones en la estructura. El tercer artículo de investigación, “Efficient and Environmentally Friendly Microwave-Assisted Synthesis of Catalytically Active Magnetic Metallic Ni Nanoparticles” describe la preparación de níquel metálico y magnético mediante un método simple y rápido asistido por microondas utilizando un reactor monomodo (CEM Discover, CEM Corp .) 13 La síntesis se ha llevado a cabo utilizando cloruro de níquel como precursor metálico y una mezcla de etilenglicol y etanol (o isopropanol) como disolvente y agente reductor. Un buen estudio llevado a cabo variando la relación molar de etilenglicol y etanol en función de la temperatura de reacción ha llevado a las condiciones de reacción donde se produjo la reducción de níquel. El mejor rendimiento (71%) se ha logrado operando a 250 ° C durante 5 minutos bajo irradiación de microondas. El mecanismo de reacción para la oxidación de etilenglicol y la reducción de Ni2 + se ha demostrado mediante el análisis de cromatografía de gases-espectrometría de masas (GC-MS), mientras que el comportamiento de la mezcla y su punto de burbuja en función de la presión del registrador se ha simulado con PRO/II software (Grupo Schneider Electric). Las nanopartículas han sido analizadas por difracción de rayos X (XRD), microscopía de emisión de barrido (SEM), microscopía electrónica de transmisión (TEM) y susceptibilidad de masa magnética. El área superficial ha sido determinada por la fisisorción de nitrógeno (modelo BET). Las nanopartículas han mostrado una buena actividad en la hidrogenolisis del bencil fenil éter (BPE), un compuesto modelo de lignina, con una conversión máxima del 24%, y reutilización de hasta 5 ciclos sin aparente pérdida de actividad

    Efficient and environmentally friendly microwave-assisted synthesis of catalytically active magnetic metallic Ni nanoparticle

    Get PDF
    Pure magnetic metallic nickel was synthesized by a simple and fast microwave-assisted method using a monomode microwave reactor. Nickel chloride was employed as metal precursor, while an environmental-friendly mixture of ethylene glycol and ethanol was simultaneously used as solvent and reducing agent. The parameters combination, for the occurrence of the reaction, of the mixture molar fraction, and the metal precursor concentration was developed. The influence of the temperature and the time of the irradiation was investigated. The best performance (71% yield) was achieved at 250 °C in 5 min of microwave irradiation. The phase and the morphology of the metal were analyzed by X-ray diffraction, scanning emission microscopy, and transmission electron microscopy, while the surface area was determined by nitrogen physisorption. The material exhibited a strong magnetic behavior. The metallic nickel showed high catalytic activity for the hydrogenolysis of benzyl phenyl ether, a lignin model compound, in a microwave-assisted environmental-friendly reaction

    Quantum-inspired Machine Learning on high-energy physics data

    Get PDF
    Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton-proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.Comment: 13 pages, 4 figure

    Microwave-assisted valorization of pig bristles: towards visible light photocatalytic chalcocite composite

    Get PDF
    Waste valorization for the production of valuable materials is of great importance for sustainable development. Herein, a new green methodology for the synthesis of photocatalytically active copper sulfide (Cu2S) carbon composites using pig bristles is reported. The catalyst was prepared via microwave-assisted methodology using ethylene glycol as the solvent, pig bristles as the sulfur and carbon source, and copper chloride as the metal precursor. Cu2S carbon composites (denoted as pb-Cu2S, where “pb” stands for “pig bristle”) were characterized by XRD, N2 physisorption, EDX and UV-Vis spectroscopy. In order to validate the practical utilization of pig bristle-derived chemicals, the photocatalytic degradation of methyl red using pb-Cu2S was investigated under white, blue, green and red visible light irradiation

    Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs)

    Get PDF
    The efficient and selective detection of volatile organic compounds (VOCs) provides key information for various purposes ranging from the toxicological analysis of indoor/outdoor environments to the diagnosis of diseases or to the investigation of biological processes. In the last decade, different sensors and biosensors providing reliable, rapid, and economic responses in the detection of VOCs have been successfully conceived and applied in numerous practical cases; however, the global necessity of a sustainable development, has driven the design of devices for the detection of VOCs to greener methods. In this review, the most recent and innovative VOC sensors and biosensors with sustainable features are presented. The sensors are grouped into three of the main industrial sectors of daily life, including environmental analysis, highly important for toxicity issues, food packaging tools, especially aimed at avoiding the spoilage of meat and fish, and the diagnosis of diseases, crucial for the early detection of relevant pathological conditions such as cancer and diabetes. The research outcomes presented in the review underly the necessity of preparing sensors with higher efficiency, lower detection limits, improved selectivity, and enhanced sustainable characteristics to fully address the sustainable manufacturing of VOC sensors and biosensors

    Scrap waste automotive converters as efficient catalysts for the continuous-flow hydrogenations of biomass derived chemicals

    Get PDF
    The catalytic activity of the scrap ceramic-core of automotive catalytic converters (SCATs) was investigated in the continuous-flow hydrogenation of different biomass derived chemicals. The waste SCATs powders were deeply characterized by ICP-MS, TGA, MP-AES, XRD, N2 physisorption, HRTEM and EDS before and after the utilization as catalyst. The hydrogenation reactions of isopulegol to menthol; cinnamyl alcohol to hydrocinnamyl alcohol; isoeugenol to dihydroeugenol; vanillin to vanillyl alcohol and benzaldehyde to benzyl alcohol were performed studying the influence on of various reaction parameters (temperature, pressure, flow rate and concentration of the starting material) on final yields. The outstanding performance and stability obtained for the low metal content of waste-derived catalysts can be attributed to the co-presence of different noble metals as well as to the composite structure itself

    Heterogeneously Catalyzed Synthesis of Imidazolones via Cycloisomerizations of Propargylic Ureas Using Ag and Au/Al SBA-15 Systems

    Get PDF
    The synthesis of imidazolones through the cycloisomerization of ureas, specifically propargylureas, has gained attention due to the large availability of starting materials. However, this type of synthesis normally requires the utilization of strong bases, such as NaOH, expensive homogeneous metal catalysts, such as Ag-, Au-, and Ru-based systems, or toxic and hazardous chemicals. Herein, a study of different synthetic routes for the preparation of imidazolones through the cycloisomerization of propargylic ureas under fast, mild, and environmentally friendly conditions with heterogeneous catalysis was undertaken. First, the synthesis were carried out under mild conditions using toluene and acetonitrile as solvents. Silver and gold nanoparticles supported on AlSBA-15 were used as heterogeneous catalysts. The catalysts were prepared by mechanochemical and microwave-assisted techniques. Sequentially, a range of solvents was replaced by the greener ethanol. Finally, all obtained results were combined in order to carry out the reaction using only water as solvent and promoter of the reaction. Aiming to expedite the procedure, the synthesis were carried out under conventional and microwave irradiation

    A Sustainable Approach for the Synthesis of Catalytically Active Peroxidase-Mimic ZnS Catalysts

    Get PDF
    Zinc sulfides are emerging as promising catalysts in different fields such as photochemistry or organic synthesis. Nevertheless, the synthesis of ZnS compounds normally requires the utilization of toxic sulfur precursors, e.g., thiourea which is a contaminant and carcinogenic agent. As a result, new green and sustainable synthetic methodologies are needed. Herein, an innovative, simple, and cheap approach for the synthesis of ZnS carbon composites is reported. Zinc acetate dihydrate was employed as metal precursor while wasted pig bristles were employed as carbon and sulfur source. The phase and the morphology of the compounds were analyzed by XRD, XPS, SEM, and EDX and the surface area was determined by nitrogen physisorption. ZnS carbon materials showed remarkable peroxidase-like catalytic activity for two different model reactions: the liquid-phase selective oxidation of benzyl alcohol and toluene to benzaldehyde (conversions up to 63% and 29% and selectivities up to 86% and 87%, respectively) using hydrogen peroxide as oxidant under microwave irradiation

    Sustainable protocol for the reduction of nitroarenes by heterogeneous Au@SBA‐15 using NaBH4 under flow conditions

    Get PDF
    Gold‐incorporated SBA‐15 catalyst was prepared by a solvent‐free ball milling approach. The catalyst showed high reactivity and selectivity in the reduction of a variety of nitroarenes to anilines operating in absolute EtOH using NaBH4 as reducing agent. The catalyst was reused in batch conditions over 5 consecutive runs without detecting any losses of activity and selectivity. Considering the high chemical stability and reusability of the catalytic system, a continuous flow protocol was also investigated and defined in order to minimize the production of waste associated to the process and optimize the continuous reuse of the catalyst. Benefits of flow conditions were proven by TON values that increased from 47.5 to 1902 and also by the minimization of both leaching (9.5 vs 1 ppm) and E‐factor values (8 vs 23 in batch)

    Boosting the Ni-Catalyzed Hydrodeoxygenation (HDO) of Anisole Using Scrap Catalytic Converters

    Get PDF
    The large availability and renewable nature of lignin makes its upgrading to bioproducts of particular interest for sustainable development. The hydrodeoxygenation (HDO) of anisole specifically represents a model reaction for the conversion of lignin to biofuels through the removal of the aromatic carbon-oxygen bonds. To date, a range of Ni-based catalysts have been reported as highly active systems for the HDO of anisole. However, there has been a substantial lack of consideration given to the environmental characteristics of these catalytic systems, in contrast with the scope of the sustainable production of biofuels. Herein, Ni-based SiO2 catalysts are prepared by a solventless and highly efficient mechanochemistry approach, having a considerably lower environmental impact as compared to standard impregnation methods. Importantly, scrap catalytic converters (SCATs) are employed as co-catalysts, proving the possibility of enhancing the catalytic HDO of anisole, with a scarcely exploited waste material. The results demonstrate that the combined use of Ni/SiO2 as catalysts and Ni/SCATs as co-catalysts remarkably boosts the rate of the conversion of anisole up to more than 50% by achieving an almost complete conversion of anisole in only 40 min instead of at 200 °C and 4 MPa H2
    corecore