
ARTICLE OPEN

Quantum-inspired machine learning on high-energy physics
data
Timo Felser 1,2,3,4✉, Marco Trenti1,2, Lorenzo Sestini 3, Alessio Gianelle 3, Davide Zuliani2,3, Donatella Lucchesi 2,3 and
Simone Montangero 2,3,5

Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to
solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a
very important and challenging big data problem in high-energy physics: the analysis and classification of data produced by the
Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks
from proton–proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor
Network approach to select important features and adapt the network geometry based on information acquired in the learning
process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the
need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications,
a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of
MHz scale.
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INTRODUCTION
Artificial Neural Networks (NN) are a well-established tool for
applications in Machine Learning and they are of increasing
interest in both research and industry1–6. Inspired by biological
NN, they are able to recognise patterns while processing a huge
amount of data. In a nutshell, a NNs describes a functional
mapping containing many variational parameters, which are
optimised during the training procedure. Recently, deep connec-
tions between Machine Learning and quantum physics have been
identified and continue to be uncovered7. On one hand, NNs have
been applied to describe the behaviour of complex quantum
many-body systems8–10 while, on the other hand, quantum-
inspired technologies and algorithms are taken into account to
solve Machine Learning tasks11–13.
One particular numerical method originated from quantum

physics which has been increasingly compared to NNs are Tensor
Networks (TNs)14–16. TNs have been developed to investigate
quantum many-body systems on classical computers by efficiently
representing the exponentially large quantum wavefunction ψj i in
a compact form and they have proven to be an essential tool for a
broad range of applications17–26. The accuracy of the TN
approximation can be controlled with the so-called bond-
dimension χ, an auxiliary dimension for the indices of the
connected local tensors. Recently, it has been shown that TN
methods can also be applied to solve Machine Learning (ML) tasks
very effectively13,16,27–31. Indeed, even though NNs have been
highly developed in recent decades by industry and research, the
first approaches of ML with TN yield already comparable results
when applied to standard datasets13,27,32. Due to their original
development focusing on quantum systems, TNs allow to easily
compute quantities such as quantum correlations or entangle-
ment entropy and thereby they grant access to insights on the
learned data from a distinct point of view for the application in

ML16,30. Hereafter, we demonstrate the effectiveness of the
approach and, more importantly, that it allows introducing
algorithms to simplify and explain the learning process, unveiling
a pathway to an explainable Artificial Intelligence. As a potential
application of this approach, we present a TN supervised learning
of identifying the charge of b-quarks (i.e. b or b) produced in high-
energy proton–proton collisions at the Large Hadron Collider
(LHC) accelerator at CERN.
In what follows, we first describe the quantum-inspired Tree

Tensor Network (TTN) and introduce different quantities that can
be extracted from the TTN classifier which are not easily accessible
for the biological-inspired Deep NN (DNN), such as correlation
functions and entanglement entropy which can be used to explain
the learning process and subsequent classifications, paving the
way to an efficient and transparent ML tool. In this regard, we
introduce the Quantum-Information Post-learning feature Selec-
tion (QuIPS), a protocol that reduces the complexity of the ML
model based on the information the single features provide for
the classification problem. We then briefly describe the LHCb
experiment and its simulation framework, the main observables
related to b-jets physics, and the relevant quantities for this
analysis together with the underlying LHCb data33,34. We further
compare the performance obtained by the DNN and the TTN,
before presenting the analytical insights into the TTN which,
among others, can be exploited to improve future data analysis of
high-energy problems for a deeper physical understanding of the
LHCb data. Moreover, we introduce the Quantum-Information
Adaptive Network Optimisation (QIANO), which adapts the TN
representation by reducing the number of free parameters based
on the captured information within the TN while aiming to
maintain the highest accuracy possible. Therewith, we can
optimise the trained TN classifier for a targeted prediction speed
without the necessity to relearn a new model from scratch.
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TNs are not only a well-established way to represent a quantum
wavefunction ψj i, but more general an efficient representation of
information as such. In the mathematical context, a TN
approximates a high-order tensor by a set of low-order tensors
that are contracted in a particular underlying geometry and have
common roots with other decompositions, such as the Singular
Value Decomposition (SVD) or Tucker decomposition35. Among
others, some of the most successful TN representations are the
Matrix Product State—or Tensor Trains18,27,36,37, the TTN—or
Hierarchical Tucker decomposition30,38,39, and the Projected
Entangled Pair States40,41.
For a supervised learning problem, a TN can be used as the

weight tensorW13,27,30, a high-order tensor which acts as classifier
for the input data {x}: Each sample x is encoded by a feature map
Φ(x) and subsequently classified by the weight tensor W. The final
confidence of the classifier for a certain class labelled by l is given
by the probability

P lðxÞ ¼ Wl � ΦðxÞ : (1)

In the following, we use a TTN Ψ to represent W (see Fig. 1,
bottom right) which can be described as a contraction of its N
hierarchically connected local tensors T{χ}

Ψ ¼
X
χ

T ½1�
l;χ1;χ2

YN
η¼2

T ½η�
χn ;χ2n ;χ2nþ 1

(2)

where n ∈ [1, N]. Therefore, we can interpret the TTN classifier Ψ as
well as a set of quantum many-body wavefunctions ψlj i—one for
each of the class labels l (see Supplementary Methods). For the
classification, we represent each sample x by a product state Φ(x).
Therefore, we map each feature xi∈ x into a quantum spin by
choosing the feature map Φ(x) as a Kronecker product of N+ 1
local feature maps

Φ½i�ðxiÞ ¼ cos
πx0

2

� �
; sin

πx0i
2

� �� �
(3)

where x0 � xi=xi;max 2 ½0; 1� is the re-scaled value with respect to
the maximum xi,max within all samples of the training set.
Accordingly, we classify a sample x by computing the overlap

〈Φ(x)∣ψl〉 for all labels l with the product state Φ(x) resulting in the

weighted probabilities

P l ¼ jhΦðxÞjψlij2P
ljhΦðxÞjψlij2

(4)

for each class. We point out, that we can encode the input data in
different non-linear feature maps as well (see Supplementary
Notes).
One of the major benefits of TNs in quantum mechanics is the

accessibility of information within the network. They allow to
efficiently measure information quantities such as entanglement
entropy and correlations. Based on these quantum-inspired
measurements, we here introduce the QuIPS protocol for the TN
application in ML, which exploits the information encoded and
accessible in the TN in order to rank the input features according
to their importance for the classification.
In information theory, entropy as such is a measure of the

information content inherent in the possible outcomes of
variables, such as e.g. a classification42–44. In TNs such information
content can be assessed by means of the entanglement entropy S
which describes the shared information between TN bipartitions.
The entanglement S is measured via the Schmidt decomposition,
that is, decomposing ψj i into two bipartitions ψA

α

�� �
and ψB

α

�� �44
such that

Ψ ¼
Xχ
α

λα ΨA
α

�� � � ΨB
α

�� �
; (5)

where λα are the Schmidt-coefficients (non-zero, normalised
singular values of the decomposition). The entanglement entropy
is then defined as S ¼ �P

αλ
2
αln λ

2
α. Consequently, the minimal

entropy S= 0 is obtained only if we have one single non-zero
singular value λ1= 1. In this case, we can completely separate the
two bipartitions as they share no information. On the contrary,
higher S means that information is shared among the bipartitions.
In the ML context, the entropy can be interpreted as follows: If

the features in one bipartition provide no valuable information for
the classification task, the entropy is zero. On the contrary, S
increases the more information between the two bipartitions are
exploited. This analysis can be used to optimise the learning
procedure: whenever S= 0, the feature can be discarded with no
loss of information for the classification. Thereby, a second model

Fig. 1 Data flow of the Machine Learning analysis for the b-jet classification of the LHCb experiment at CERN. After proton–proton
collisions, b- and b-quarks are created, which subsequently fragment into particle jets (left). The different particles within the jets are tracked
by the LHCb detector. Selected features of the detected particle data are used as input for the Machine Learning analysis by NNs and TNs in
order to determine the charge of the initial quark (right).
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with fewer features and fewer tensors can be introduced. This
second, more efficient model results in the same predictions in
less time. On the contrary, a high bipartition entropy highlights
which feature—or combination of features—are important for the
correct predictions.
The second set of measurements we take into account are the

correlation functions

Cl
i;j ¼

hψl jσzi σzj jψli
hψljψli

(6)

for each pair of features (located at site i and j) and for each class l.
The correlations offer an insight into the possible relation among
the information that the two features provide. In case of maximum
correlation or anti-correlation among them for all classes l, the
information of one of the features can be obtained by the other
one (and vice versa), thus one can be neglected. In case of no
correlation among them, the two features may provide funda-
mentally different information for the classification. The correla-
tion analysis allows pinpointing if two features give independent
information. However, the correlation itself—in contrast to the
entropy—does not tell if this information is important for the
classification.
In conclusion, based on the previous insights, namely: (i) a low

entropy of a feature bipartition signals that one of the two
bipartitions can be discarded, providing negligible loss of
information and (ii) if two features are completely (anti-)correlated
we can neglect at least one of them, the QuIPS enables to filter out
the most valuable features for the classification.
Nowadays, in particle physics, ML is widely used for the

classification of jets, i.e. streams of particles produced by the
fragmentation of quarks and gluons. The jet substructure can be
exploited to solve such classification problems45. ML techniques
have been proposed to identify boosted, hadronically decaying
top quarks46, or to identify the jet charge47. The ATLAS and CMS
collaborations developed ML algorithms in order to identify jets
generated by the fragmentation of b-quarks48–50: a comprehen-
sive review on ML techniques at the LHC can be found in51.
The LHCb experiment in particular is, among others, dedicated

to the study of the physics of b- and c-quarks produced in
proton–proton collisions. Here, ML methods have been introduced
recently for the discrimination between b- and c-jets by using
Boosted Decision Tree classifiers52. However, a crucial topic for the
LHCb experiment, which is yet unexploited by ML, is the
identification of the charge of a b-quark, i.e. discriminating
between a b or b. Such identification can be used in many
physics measurements, and it is the core of the determination of
the charge asymmetry in b-pairs production, a quantity sensitive
to physics beyond the Standard Model53. Whenever produced in a
scattering event, b-quarks have a short lifetime as free particles;
indeed, they manifest themselves as bound states (hadrons) or as
narrow cones of particles produced by the hadronization (jets). In
the case of the LHCb experiment, the b-jets are detected by the
apparatus located in the forward region of proton–proton
collisions (see Fig. 1, left)54. The LHCb detector includes a particle
identification system that distinguishes different types of charged
particles within the jet, and a high-precision tracking system able
to measure the momentum of each particles55. Still, the separation
between b- and b-jets is a highly difficult task because the b-quark
fragmentation produce dozens of particles via non-perturbative
Quantum Chromodynamics processes, resulting in non-trivial
correlations between the jet particles and the original quark.
The algorithms used to identify the charge of the b-quarks

based on information on the jets are called tagging methods. The
tagging algorithm performance is typically quantified with the
tagging power ϵtag, representing the effective fraction of jets that
contribute to the statistical uncertainty in an asymmetry
measurement56,57. In particular, the tagging power ϵtag takes into

account the efficiency ϵeff (the fraction of jets for which the
classifier takes a decision) and the prediction accuracy a (the
fraction of correctly classified jets among them) as follows:

ϵtag ¼ ϵeff � ð2a � 1Þ2 : (7)

To date, the muon tagging method gives the best performance on
the b- vs. b-jet discrimination using the dataset collected in the
LHC Run I58: here, the muon with the highest momentum in the
jet is selected, and its electric charge is used to decide on the b-
quark charge.
For the ML application, we now formulate the identification of

the b-quark charge in terms of a supervised learning problem. As
described above, we implemented a TTN as a classifier and
applied it to the LHCb problem analysing its performance.
Alongside, a DNN analysis is performed to the best of our
capabilities, and both algorithms are compared with the muon
tagging approach. Both the TTN and the DNN, use as input for the
supervised learning 16 features of the jet substructure from the
official simulation data released by the LHCb collaboration33,34.
The 16 features are determined as follows: the muon with the
highest pT among all other detected muons in the jet is selected
and the same is done for the highest pT kaon, pion, electron, and
proton, resulting in 5 different selected particles. For each particle,
three observables are considered: (i) The momentum relative to
the jet axis (prelT ), (ii) the particle charge (q), and (iii) the distance
between the particle and the jet axis (ΔR), for a total of 5 × 3
observables. If a particle type is not found in a jet, the related
features are set to 0. The 16th feature is the total jet charge Q,
defined as the weighted average of the particles charges qi inside
the jet, using the particles prelT as weights:

Q ¼
P

iðprelT ÞiqiP
iðprelT Þi

: (8)

RESULTS
Analysis framework
In the following, we present the jet classification performance for
the TTN and the DNN applied to the LHCb dataset, also comparing
both ML techniques with the muon tagging approach. For the
DNN we use an optimised network with three hidden layers of 96
nodes (see Supplementary Methods for details). Hereafter, we aim
to compare the best possible performance of both approaches
therefore, we optimised the hyperparameters of both methods in
order to obtain the best possible results from each of them, TTN
and DNN. Therefore, we split the dataset of about 700k events
(samples) into two sub-sets: 60% of the samples are used in the
training process while the remaining 40% are used as test set to
evaluate and compare the different methods. For each event
prediction after the training procedure, both ML models output
the probability Pb to classify the event as a jet generated by a b-
or a b-quark. A threshold Δ around Pb ¼ 0:5 is then defined in
which we classify the quark as unknown in order to optimise the
overall tagging power ϵtag.

Jet classification performance
We obtain similar performances in terms of the raw prediction
accuracy applying both ML approaches after the training
procedure on the test data: the TTN takes a decision on the
charge of the quark in ϵ TTNeff ¼ 54:5% of the cases with an overall
accuracy of aTTN= 70.56%, while the DNN decides in ϵDNNeff ¼
55:3% of the samples with aDNN= 70.49%. We checked both
approaches for biases in physical quantities to ensure that both
methods are able to properly capture the physical process behind
the problem and thus that they can be used as valid tagging
methods for LHCb events (see Supplementary Methods).
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In Fig. 2a we present the tagging power of the different
approaches as a function of the jet transverse momentum pT.
Evidently, both ML methods perform significantly better than the
muon tagging approach for the complete range of jet transverse
momentum pT, while the TTN and DNN display comparable
performances within the statistical uncertainties.
In Fig. 2c, d we present the histograms of the confidences for

predicting a b-flavoured jet for all samples in the test dataset for
the DNN and the TTN respectively. Interestingly, even though both
approaches give similar performances in terms of overall precision
and tagging power, the prediction confidences are fundamentally
different. For the DNN, we see a Gaussian-like distribution with, in
general, not very high confidence for each prediction. Thus, we
obtain less correct predictions with high confidences, but at the
same time, fewer wrong predictions with high confidences
compared to the TTN predictions. On the other hand, the TTN
displays a flatter distribution including more predictions—correct
and incorrect—with higher confidence. Remarkably though, we
can see peaks for extremely confident predictions (around 0 and
around 1) for the TTN. These peaks can be traced back to the
presence of the muon; noting that the charge of which is a well-
defined predictor for a jet generated by a b-quark. The DNN lacks
these confident predictions exploiting the muon charge. Further,
we mention that using different cost functions for the DNN, i.e.
cross-entropy loss function and the Mean Squared Error, lead to
similar results (see Supplementary Methods).
Finally, in Fig. 2b we present the Receiving Operator

Characteristic (ROC) curves for the TTN and the DNN together
with the line of no-discrimination, which represents a randomly

guessing classifier: the two ROC curves for TTN and DNN are
perfectly coincident, and the Area Under the Curve (AUC) for the
two classifiers is the almost same (AUCTTN= 0.689 and AUCDNN=
0.690). The graph illustrates the similarity in the outputs between
TTN and DNN despite the different confidence distributions. This is
further confirmed by a Pearson correlation factor of r= 0.97
between the outputs of the two classifiers.
In conclusion, the two different approaches result in similar

outcomes in terms of prediction performances. However, the
underlying information used by the two discriminators is
inherently different. For instance, the DNN predicts more
conservatively, in the sense that the confidences for each
prediction tend to be lower compared with the TTN. Additionally,
the DNN does not exploit the presence of the muon as strongly as
the TTN, even though the muon is a good predictor for the
classification.

Exploiting insights into the data with TTN
As previously mentioned, the TTN analysis allows to efficiently
measure the captured correlations and the entanglement within
the classifier. These measurements give insight into the learned
data and can be exploited via QuIPS to identify the most
important features typically used for the classifications.
In Fig. 3a we present the correlation analysis allowing us to

pinpoint if two features give independent information. For both
labels (l ¼ b; b) the results are very similar, thus in Fig. 3a we
present only l= b. We see among others that the momenta prelT
and distance ΔR of all particles are correlated except for the kaon.

Fig. 2 Comparison of the DNN and TNN analysis. a Tagging power for the DNN (green), TTN (blue) and the muon tagging (red), (b) ROC
curves for the DNN (green) and the TTN (blue, but completely covered by DNN), compared with the line of no-discrimination (dotted navy-blue
line), (c) probability distribution for the DNN and (d) for the TTN. In the two distributions (c, d), the correctly classified events (green) are
shown in the total distribution (light blue). Below, in black all samples where a muon was detected in the jet.

Fig. 3 Exploiting the information provided by the learned TTN classifier. a Correlations between the 16 input features (blue for anti-
correlated, white for uncorrelated, red for correlated). The numbers indicate q, prelT , ΔR of the muon (1–3), kaon (4–6), pion (7–9), electron
(10–12), proton (13–15) and the jet charge Q (16). b Entropy of each feature as the measure for the information provided for the classification.
c Tagging power for learning on all features (blue), the best eight proposed by QuIPS exploiting insights from (a, b) (magenta), the worst eight
(yellow) and the muon tagging (red). d Tagging power for decreasing bond-dimension truncated after training: The complete model (blue
shades for χ= 100, χ= 50, χ= 5), for using the QuIPS best 8 features only (violet shades for χ= 16, χ= 5), and the muon tagging (red).
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Thus this particle provides information to the classification which
seems to be independent of the information gained by the other
particles. However, the correlation itself does not tell if this
information is important for the classification. Thus, we compute
the entanglement entropy S of each feature, as reported in Fig. 3b.
Here, we conclude that the features with the highest information
content are the total charge and prelT and distance ΔR of the kaon.
Driven by these insights, we employ the QuIPS to discard half of
the features by selecting the eight most important ones: i.–iii.
charge, momenta and distance of the muon, iv.–vi. charge,
momenta and distance of the kaon, vii. charge of the pion and viii.
total detected charge. To test the QuIPS performance, we
compared it with an independent but more time-expensive
analysis on the importance of the different particle types: the two
approaches perfectly matched. Further, we studied two new
models, one composed of the eight most important features
proposed by the QuIPS, and, for comparison, another with the
eight discarded features. In Fig. 3c we show the tagging power for
the different analysis with the complete 16-sites (model M16), the
best 8 (B8), the worst 8 (W8) and the muon tagging. Remarkably,
we see that the models M16 and B8 give comparable results, while
model W8 results are even worse than the classical approach.
These performances are confirmed by the prediction accuracy of
the different models: While only less than 1% of accuracy is lost
from M16 to B8, the accuracy of the model W8 drastically drops to
around 52%—that is, almost random predictions. Finally, in this
particular run, the model B8 has been trained 4.7 times faster with
respect to model M16 and predicts 5.5 times faster as well (The
actual speed-up depends on the bond-dimension and other
hyperparameters).
A critical point of interest in real-time ML applications is the

prediction time. For example, in the LHCb Run 2 data-taking, the
high-level software trigger takes a decision approximately every
1 μs55 and shorter latencies are expected in future Runs.
Consequently, with the aid of the QuIPS protocol, we can
efficiently reduce the prediction computational time while
maintaining a comparable high prediction power. However, with
TTNs, we can undertake an even further step to reduce the
prediction time by reducing the bond-dimension χ after the
training procedure. Here, we introduce the QIANO performing this
truncation by means of the well-established SVD for TN18,23,25 in a
way ensuring to introduce the least infidelity possible. In other
words, QIANO can adjust the bond-dimension χ to achieve a
targeted prediction time while keeping the prediction accuracy
reasonably high. We stress that this can be done without
relearning a new model, as would be the case with NN.
Finally, we apply QuIPS and QIANO to reduce the information in

the TTN in an optimal way for a targeted balance between

prediction time and accuracy. In Fig. 3d we show the tagging
power taking the original TTN and truncate it to different bond
dimensions χ. We can see, that even though we compress quite
heavily, the overall tagging power does not change significantly.
In fact, we only drop about 0.03% in the overall prediction
accuracy, while at the same time improving the average
prediction time from 345 to 37 μs (see Table 1). Applying the
same idea to the model B8 we can reduce the average prediction
time effectively down to 19 μs on our machines, a performance
compatible with current real-time classification rate.

DISCUSSION
We analysed an LHCb dataset for the classification of b- and b-jets
with two different ML approaches, a DNN and a TTN. We showed
that we obtained with both techniques a tagging power about
one order of magnitude higher than the classical muon tagging
approach, which up to date is the best-published result for this
classification problem. We pointed out that, even though both
approaches result in similar tagging power, they treat the data
very differently. In particular, TTN effectively recognises the
importance of the presence of the muon as a strong predictor
for the jet classification. Here, we point out that we only used a
conjugate gradient descent for the optimisation of our TTN
classifier. Deploying more sophisticated optimisation procedures
which have already been proven to work for Tensor Trains, such as
stochastic gradient descent59 or Riemannian optimisation28, may
further improve the performance (in both time and accuracy) in
future applications.
We further explained the crucial benefits of the TTN approach

over the DNNs, namely (i) the ability to efficiently measuring
correlations and the entanglement entropy, and (ii) the power of
compressing the network while keeping a high amount of
information (to some extend even lossless compression). We
showed how the former quantum-inspired measurements help to
set up a more efficient ML model: in particular, by introducing an
information-based heuristic technique, we can establish the
importance of single features based on the information captured
within the trained TTN classifier only. Using this insight, we
introduced the QuIPS, which can significantly reduce the model
complexity by discarding the least-important features maintaining
high prediction accuracy. This selection of features based on their
informational importance for the trained classifier is one major
advantage of TNs targeting to effectively decrease training and
prediction time. Regarding the latter benefit of the TTN, we
introduced the QIANO, which allows to decrease the TTN
prediction time by optimally decreasing its representative power
based on information from the quantum entropy, introducing the

Table 1. TTN prediction time.

Model M16 (incl. all 16 features) Model B8 (best 8 features determined by QuIPS)

χ Prediction time Accuracy Free parameters Prediction time Accuracy Free parameters

200 345 μs 70.27% (63.45%) 51,501 – – –

100 178 μs 70.34% (63.47%) 25,968 – – –

50 105 μs 70.26% (63.47%) 13,214 – – –

20 62 μs 70.31% (63.46%) 5576 – – –

16 – – – 19 μs 69.10% (62.78%) 264

10 40 μs 70.36% (63.44%) 1311 19 μs 69.01% (62.78%) 171

5 37 μs 69.84% (62.01%) 303 19 μs 69.05% (62.76%) 95

Prediction time, accuracy with (and without) applied cuts Δ and number of free parameters of the TTN for different bond-dimension χ when we reduce the
TTN model with QIANO, both for the complete 16 (left) and the QuIPS reduced 8 features (right). For the model M16 with all 16 features (left), we trained the
TTN with χ= 200 and truncate from there while for the reduced model B8 (right), the original bond-dimension was χ= 16 (being the maximum χ in this
subspace).
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least possible infidelity. In contrast to DNNs, with the QIANO we
do not need to set up a new model and train it from scratch, but
we can optimise the network post-learning adaptively to the
specific conditions, e.g. the used CPU or the required prediction
time of the final application.
Finally, we showed that using QuIPS and QIANO we can

effectively compress the trained TTN to target a given prediction
time. In particular, we decreased our prediction times from 345 to
19 μs. We stress that, while we only used one CPU for the
predictions, in future application we might obtain a speed-up
from 10 to 100 times by parallelising the tensor contractions on
GPUs60. Thus, we are confident that it is possible to reach a MHz
prediction rate while still obtaining results significantly better than
the classical muon tagging approach. Here, we also point out that,
for using this algorithm on the LHCb real-time data acquisition
system, it would be necessary to develop custom electronic cards
like FPGAs, or GPUs with an optimised architecture. Such solutions
should be explored in the future.
Given the competitive performance of the presented TTN

method at its application in high-energy physics, we envisage a
multitude of possible future applications in high-energy experi-
ments at CERN and in other fields of science. Future applications
of our approach in the LHCb experiment may include the
discrimination between b-jets, c-jets and light flavour jets52. A
fast and efficient real-time identification of b- and c-jets can be the
key point for several studies in high-energy physics, ranging from
the search for the rare Higgs boson decay in two c-quarks, up to
the search for new particles decaying in a pair of heavy-flavour
quarks (bb or cc).

METHODS
LHCb particle detection
LHCb is fully instrumented in the phase space region of proton–proton
collisions defined by the pseudo-rapidity (η) range [2, 5], with η defined as

η ¼ �log tan
θ

2

� �� �
; (9)

where θ is the angle between the particle momentum and the beam axis
(see Fig. 4). The direction of particles momenta can be fully identified by η
and by the azimuthal angle ϕ, defined as the angle in the plane transverse

to the beam axis. The projection of the momentum in this plane is called
transverse momentum (pT). The energy of charged and neutral particles is
measured by electromagnetic and hadronic calorimeters. In the following,
we work with physics natural units.
At LHCb jets are reconstructed using a Particle Flow algorithm61 for

charged and neutral particles selection and using the anti-kt algorithm
62

for clusterization. The jet momentum is defined as the sum of the
momenta of the particles that form the jet, while the jet axis is defined as
the direction of the jet momentum. Most of the particles that form the jet

are contained in a cone of radius ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

q
¼ 0:5, where

Δη and Δϕ are respectively the pseudo-rapidity difference and the
azimuthal angle difference between the particles momenta and the jet
axis. For each particle inside the jet cone, the momentum relative to the jet
axis (prelT ) is defined as the projection of the particle momentum in the
plane transverse to the jet axis.

LHCb dataset
Differently from other ML performance analyses, the dataset used in this
paper has been prepared specifically for this LHCb classification problem,
therefore baseline ML models and benchmarks on it do not exist. In particle
physics, features are strongly dependent on the detector considered (i.e.
different experiments may have a different response on the same physical
object) and for this reason the training has been performed on a dataset
that reproduces the LHCb experimental conditions, in order to obtain the
optimal performance with this experiment.
The LHCb simulation datasets used for our analysis are produced with a

Monte Carlo technique using the framework GAUSS63, which makes use of
PYTHIA 864 to generate proton–proton interactions and jet fragmentation
and uses EvtGen65 to simulate b-hadrons decay. The GEANT4 software66,67

is used to simulate the detector response, and the signals are digitised and
reconstructed using the LHCb analysis framework.
The used dataset contains b and b-jets produced in proton–proton

collisions at a centre-of-mass energy of 13 TeV33,34. Pairs of b-jets and b-jets
are selected by requiring a jet pT greater than 20 GeV and η in the range
[2.2, 4.2] for both jets.

Muon tagging
LHCb measured the bb forward-central asymmetry using the dataset
collected in the LHC Run I58 using the muon tagging approach: In this
method, the muon with the highest momentum in the jet cone is selected,
and its electric charge is used to decide on the b-quark charge. In fact, if
this muon is produced in the original semi-leptonic decay of the b-hadron,
its charge is totally correlated with the b-quark charge. Up to date, the
muon tagging method gives the best performance on the b- vs. b-jet
discrimination. Although this method can distinguish between b- and
b-quark with good accuracy, its efficiency is low as it is only applicable on
jets where a muon is found and it is intrinsically limited by the b-hadrons
branching ratio in semi-leptonic decays. Additionally, the muon tagging
may fail in some scenarios, where the selected muon is produced not by
the decay of the b-hadron but in other decay processes. In these cases, the
muon may not be completely correlated with the b-quark charge.

Machine learning approaches
We train the TTN and analyse the data with different bond dimensions χ.
The auxiliary dimension χ controls the number of free parameters within
the variational TTN ansatz. While the TTN is able to capture more
information from the training data with increasing bond-dimension χ,
choosing χ too large may lead to overfitting and thus can worsen the
results in the test set. For the DNN we use an optimised network with three
hidden layers of 96 nodes (see Supplementary Methods for details).
For each event prediction, both methods give as output the probability

Pb to classify a jet as generated by a b- or a b-quark. This probability (i.e.
the confidence of the classifier) is normalised in the following way: for
values of probability Pb > 0:5 (Pb < 0:5) a jet is classified as generated by
a b-quark (b-quark), with an increasing confidence going to Pb ¼ 1
(Pb ¼ 0). Therefore a completely confident classifier returns a probability
distribution peaked at Pb ¼ 1 and Pb ¼ 0 for jets classified as generated
by b- and b-quark respectively.
We introduce a threshold Δ symmetrically around the prediction

confidence of Pb ¼ 0:5 in which we classify the event as unknown. We
optimise the cut on the predictions of the classifiers (i.e. their confidences)
to maximise the tagging power for each method based on the training

Fig. 4 Illustrative sketch showing an LHCb experiment and the
two possible tagging algorithms. A single particle tagging
algorithm, exploiting information coming from one single particle
(muon), and the inclusive tagging algorithm which exploits the
information on all the jet constituents.
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samples. In the following analysis we find ΔTTN= 0.40 (ΔDNN= 0.20) for the
TTN (DNN). Thereby, we predict for the TTN (DNN) a b-quark with
confidences Pb > CTTN ¼ 0:70 (Pb > CDNN ¼ 0:60), a b-quark with con-
fidences Pb < 0:30 (Pb < 0:40) and no prediction for the range in between
(see Fig. 2c, d).

DATA AVAILABILITY
This paper is based on data obtained by the LHCb experiment, but is analyzed
independently, and has not been reviewed by the LHCb collaboration. The data are
available in the official LHCb open data repository33,34.

CODE AVAILABILITY
The software code used for the analysis of the Deep Neural Network can be freely
acquired when contacting gianelle@pd.infn.it and it is permitted to use it for any kind
of private or commercial usage including modification and distribution without any
liabilities or warranties. The software code for the TTN analysis is currently not
available for public use. For more information, please contact timo.felser@physik.uni-
saarland.de.
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