154 research outputs found

    Visual Odometry and Trajectory Reconstruction for UAVs

    Get PDF
    The growing popularity of systems based on Unmanned Aerial Vehicles (UAVs) is highlighting their vulnerability particularly in relation to the positioning system used. Typically, UAV architectures use the civilian GPS which is exposed to a number of different attacks, such as jamming or spoofing. This is why it is important to develop alternative methodologies to accurately estimate the actual UAV position without relying on GPS measurements only. In this paper we propose a position estimate method for UAVs based on monocular visual odometry. We have developed a flight control system capable of keeping track of the entire trajectory travelled, with a reduced dependency on the availability of GPS signal. Moreover, the simplicity of the developed solution makes it applicable to a wide range of commercial drones. The final goal is to allow for safer flights in all conditions, even under cyber-attacks trying to deceive the drone

    Deep-Learning-Based Action and Trajectory Analysis for Museum Security Videos

    Get PDF
    Recent advancements in deep learning and video analysis, combined with the efficiency of contemporary computational resources, have catalyzed the development of advanced real-time computational systems, significantly impacting various fields. This paper introduces a cutting-edge video analysis framework that was specifically designed to bolster security in museum environments. We elaborate on the proposed framework, which was evaluated and integrated into a real-time video analysis pipeline. Our research primarily focused on two innovative approaches: action recognition for identifying potential threats at the individual level and trajectory extraction for monitoring museum visitor movements, serving the dual purposes of security and visitor flow analysis. These approaches leverage a synergistic blend of deep learning models, particularly CNNs, and traditional computer vision techniques. Our experimental findings affirmed the high efficacy of our action recognition model in accurately distinguishing between normal and suspicious behaviors within video feeds. Moreover, our trajectory extraction method demonstrated commendable precision in tracking and analyzing visitor movements. The integration of deep learning techniques not only enhances the capability for automatic detection of malevolent actions but also establishes the trajectory extraction process as a robust and adaptable tool for various analytical endeavors beyond mere security applications

    A low power IoT sensor node architecture for waste management within smart cities context

    Get PDF
    This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented

    The reliability of a deep learning model in external memory clinic MRI data: A multi‐cohort study

    Get PDF
    AbstractBackgroundDeep learning (DL) has provided impressive results in numerous domains in recent years, including medical image analysis. Training DL models requires large data sets to yield good performance. Since medical data can be difficult to acquire, most studies rely on public research cohorts, which often have harmonized scanning protocols and strict exclusion criteria. This is not representative of a clinical setting. In this study, we investigated the performance of a DL model in out‐of‐distribution data from multiple memory clinics and research cohorts.MethodWe trained multiple versions of AVRA: a DL model trained to predict visual ratings of Scheltens' medial temporal atrophy (MTA) scale (Mårtensson et al., 2019). This was done on different combinations of training data—starting with only harmonized MRI data from public research cohorts, and further increasing image heterogeneity in the training set by including external memory clinic data. We assessed the performance in multiple test sets by comparing AVRA's MTA ratings to an experienced radiologist's (who rated all images in this study). Data came from Alzheimer's Disease Neuroimaging Initiative (ADNI), AddNeuroMed, and images from 13 European memory clinics in the E‐DLB consortium.ResultsModels trained only on research cohorts generalized well to new data acquired with similar protocols as the training data (weighted kappa κw between 0.70‐0.72), but worse to memory clinic data with more image variability (κw between 0.34‐0.66). This was most prominent in one specific memory clinic, where the DL model systematically predicted too low MTA scores. When including data from a wider range of scanners and protocols during training, the agreement to the radiologist's ratings in external memory clinics increased (κw between 0.51‐0.71).ConclusionIn this study we showed that increasing heterogeneity in training data improves generalization to out‐of‐distribution data. Our findings suggest that studies assessing reliability of a DL model should be done in multiple cohorts, and that softwares based on DL need to be rigorously evaluated prior to being certified for deployment to clinics. References: Mårtensson, G. et al. (2019) 'AVRA: Automatic Visual Ratings of Atrophy from MRI images using Recurrent Convolutional Neural Networks', NeuroImage: Clinical. Elsevier, 23(March), p. 101872

    The association of indwelling urinary catheter with delirium in hospitalized patients and nursing home residents: an explorative analysis from the "Delirium Day 2015"

    Get PDF
    Backround: Use of indwelling urinary catheter (IUC) in older adults has negative consequences, including delirium. Aim: This analysis, from the "Delirium Day 2015", a nationwide multicenter prevalence study, aim to evaluate the association of IUC with delirium in hospitalized and Nursing Homes (NHs) patients. Methods: Patients underwent a comprehensive geriatric assessment, including the presence of IUC; inclusion criteria were age > 65 years, being Italian speaker and providing informed consent; exclusion criteria were coma, aphasia, end-of-life status. Delirium was assessed using the 4AT test (score ≥ 4: possible delirium; scores 1-3: possible cognitive impairment). Results: Among 1867 hospitalized patients (mean age 82.0 ± 7.5 years, 58% female), 539 (28.9%) had IUC, 429 (22.9%) delirium and 675 (36.1%) cognitive impairment. IUC was significantly associated with cognitive impairment (OR 1.60, 95% CI 1.19-2.16) and delirium (2.45, 95% CI 1.73-3.47), this latter being significant also in the subset of patients without dementia (OR 2.28, 95% CI 1.52-3.43). Inattention and impaired alertness were also independently associated with IUC. Among 1454 NHs residents (mean age 84.4 ± 7.4 years, 70.% female), 63 (4.3%) had IUC, 535 (36.8%) a 4AT score ≥ 4, and 653 (44.9%) a 4AT score 1-3. The multivariate logistic regression analysis did not show a significant association between 4AT test or its specific items with IUC, neither in the subset of patients without dementia. Discussion: We confirmed a significant association between IUC and delirium in hospitalized patients but not in NHs residents. Conclusion: Environmental and clinical factors of acute setting might contribute to IUC-associated delirium occurrence

    "Delirium Day": A nationwide point prevalence study of delirium in older hospitalized patients using an easy standardized diagnostic tool

    Get PDF
    Background: To date, delirium prevalence in adult acute hospital populations has been estimated generally from pooled findings of single-center studies and/or among specific patient populations. Furthermore, the number of participants in these studies has not exceeded a few hundred. To overcome these limitations, we have determined, in a multicenter study, the prevalence of delirium over a single day among a large population of patients admitted to acute and rehabilitation hospital wards in Italy. Methods: This is a point prevalence study (called "Delirium Day") including 1867 older patients (aged 65 years or more) across 108 acute and 12 rehabilitation wards in Italian hospitals. Delirium was assessed on the same day in all patients using the 4AT, a validated and briefly administered tool which does not require training. We also collected data regarding motoric subtypes of delirium, functional and nutritional status, dementia, comorbidity, medications, feeding tubes, peripheral venous and urinary catheters, and physical restraints. Results: The mean sample age was 82.0 Âą 7.5 years (58 % female). Overall, 429 patients (22.9 %) had delirium. Hypoactive was the commonest subtype (132/344 patients, 38.5 %), followed by mixed, hyperactive, and nonmotoric delirium. The prevalence was highest in Neurology (28.5 %) and Geriatrics (24.7 %), lowest in Rehabilitation (14.0 %), and intermediate in Orthopedic (20.6 %) and Internal Medicine wards (21.4 %). In a multivariable logistic regression, age (odds ratio [OR] 1.03, 95 % confidence interval [CI] 1.01-1.05), Activities of Daily Living dependence (OR 1.19, 95 % CI 1.12-1.27), dementia (OR 3.25, 95 % CI 2.41-4.38), malnutrition (OR 2.01, 95 % CI 1.29-3.14), and use of antipsychotics (OR 2.03, 95 % CI 1.45-2.82), feeding tubes (OR 2.51, 95 % CI 1.11-5.66), peripheral venous catheters (OR 1.41, 95 % CI 1.06-1.87), urinary catheters (OR 1.73, 95 % CI 1.30-2.29), and physical restraints (OR 1.84, 95 % CI 1.40-2.40) were associated with delirium. Admission to Neurology wards was also associated with delirium (OR 2.00, 95 % CI 1.29-3.14), while admission to other settings was not. Conclusions: Delirium occurred in more than one out of five patients in acute and rehabilitation hospital wards. Prevalence was highest in Neurology and lowest in Rehabilitation divisions. The "Delirium Day" project might become a useful method to assess delirium across hospital settings and a benchmarking platform for future surveys

    Beta-Blocker Use in Older Hospitalized Patients Affected by Heart Failure and Chronic Obstructive Pulmonary Disease: An Italian Survey From the REPOSI Register

    Get PDF
    Beta (β)-blockers (BB) are useful in reducing morbidity and mortality in patients with heart failure (HF) and concomitant chronic obstructive pulmonary disease (COPD). Nevertheless, the use of BBs could induce bronchoconstriction due to β2-blockade. For this reason, both the ESC and GOLD guidelines strongly suggest the use of selective β1-BB in patients with HF and COPD. However, low adherence to guidelines was observed in multiple clinical settings. The aim of the study was to investigate the BBs use in older patients affected by HF and COPD, recorded in the REPOSI register. Of 942 patients affected by HF, 47.1% were treated with BBs. The use of BBs was significantly lower in patients with HF and COPD than in patients affected by HF alone, both at admission and at discharge (admission, 36.9% vs. 51.3%; discharge, 38.0% vs. 51.7%). In addition, no further BB users were found at discharge. The probability to being treated with a BB was significantly lower in patients with HF also affected by COPD (adj. OR, 95% CI: 0.50, 0.37-0.67), while the diagnosis of COPD was not associated with the choice of selective β1-BB (adj. OR, 95% CI: 1.33, 0.76-2.34). Despite clear recommendations by clinical guidelines, a significant underuse of BBs was also observed after hospital discharge. In COPD affected patients, physicians unreasonably reject BBs use, rather than choosing a β1-BB. The expected improvement of the BB prescriptions after hospitalization was not observed. A multidisciplinary approach among hospital physicians, general practitioners, and pharmacologists should be carried out for better drug management and adherence to guideline recommendations

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population

    Prescription appropriateness of anti-diabetes drugs in elderly patients hospitalized in a clinical setting: evidence from the REPOSI Register

    Get PDF
    Diabetes is an increasing global health burden with the highest prevalence (24.0%) observed in elderly people. Older diabetic adults have a greater risk of hospitalization and several geriatric syndromes than older nondiabetic adults. For these conditions, special care is required in prescribing therapies including anti- diabetes drugs. Aim of this study was to evaluate the appropriateness and the adherence to safety recommendations in the prescriptions of glucose-lowering drugs in hospitalized elderly patients with diabetes. Data for this cross-sectional study were obtained from the REgistro POliterapie-Società Italiana Medicina Interna (REPOSI) that collected clinical information on patients aged ≥ 65 years acutely admitted to Italian internal medicine and geriatric non-intensive care units (ICU) from 2010 up to 2019. Prescription appropriateness was assessed according to the 2019 AGS Beers Criteria and anti-diabetes drug data sheets.Among 5349 patients, 1624 (30.3%) had diagnosis of type 2 diabetes. At admission, 37.7% of diabetic patients received treatment with metformin, 37.3% insulin therapy, 16.4% sulfonylureas, and 11.4% glinides. Surprisingly, only 3.1% of diabetic patients were treated with new classes of anti- diabetes drugs. According to prescription criteria, at admission 15.4% of patients treated with metformin and 2.6% with sulfonylureas received inappropriately these treatments. At discharge, the inappropriateness of metformin therapy decreased (10.2%, P < 0.0001). According to Beers criteria, the inappropriate prescriptions of sulfonylureas raised to 29% both at admission and at discharge. This study shows a poor adherence to current guidelines on diabetes management in hospitalized elderly people with a high prevalence of inappropriate use of sulfonylureas according to the Beers criteria
    • …
    corecore