74 research outputs found

    Stick-slip vs. stable sliding fault behaviour: A case-study using a multidisciplinary approach in the volcanic region of Mt. Etna (Italy)

    Get PDF
    Abstract In active volcanic zones, fault dynamics is considerably fast but it is often difficult to separate the pattern of nearly continuous large-scale volcanic processes (inflation/deflation processes, flank instability) from impulsive episodes such as dyke intrusions or coseismic fault displacements. At Etna, multidisciplinary studies on active faults whose activity does not strictly depend on volcanic processes, are relatively few. Here we present the case-study of the San Leonardello fault, an active structure located in the eastern flank of Mt. Etna characterised by a well-known seismic history. This fault saw renewed activity in May 2009, when pre-seismic creeping along the southern segment preceded an MW 4.0 earthquake in the northern segment, followed by some twenty-five aftershocks. Later, in March–April 2016, creep events reactivated the southern section of the same fault. Both the seismic and aseismic phenomena were recorded by the seismic and GNSS networks of INGV-Osservatorio Etneo, and produced surface faulting that left a footprint in the pattern of ground deformation detected by the InSAR measurements. We demonstrate that the integration of multidisciplinary data collected for volcano surveillance may shed light on different aspects of fault dynamics, and allow understanding how coseismic slip and creep alternate in space and time along the strike. Moreover, we use findings from our independent datasets to propose a conceptual model of the San Leonardello fault, taking into account behaviour and previous constraints from fault-based seismic hazard analyses. Although the faulting mechanisms described here occur at a very small scale compared with those of a purely tectonic setting, this case-study may represent a perfect natural lab for improving knowledge of seismogenic processes, also in other fault zones characterised by stick slip vs. stable-sliding fault behaviour

    Dynamics of Vulcano Island investigated by long-term (40 years) geophysical data

    Get PDF
    Vulcano island is a composite volcanic edifice located in the south-central sector of the Aeolian Archipelago (Tyrrhenian Sea, Italy) and it is an important tourist destination. Historic activity has been characterized by frequent transitions from phereatomagmatic to minor magmatic activity. The last eruption in 1888-90 was characterized by energetic explosive pulses and defines the “vulcanian” type of activity. Since then, volcanic activity has taken the form of fumarolic emanations of variable intensity and temperature, mainly concentrated at “La Fossa” crater, with maximum temperatures ranging between 200° and 300° C; temperature increases and changes in the gas chemistry, were often observed. The most recent episode began in the 80’s when fumarole temperature progressively increased to 690°C in May 1993. Vulcano is active and this favoured monitoring and research studies, in particular focussed on the most recent structures. In the frame of DPC-INGV “V3” project, we investigate the Vulcano dynamics through ca. 40 years of ground deformation and seismicity data collected by the discrete and continuous INGV monitoring networks. We considered levelling, GPS, EDM, seismic and tilt data. EDM and levelling measurements began in the middle 1970s and since the late 1990s the EDM benchmarks have been measurered using GPS. We observed three scales of ground deformation: the first one seems to be linked to the regional tectonics, with a general transpressive kinematics; the second one affects the northern half of the island and could be related to the caldera dynamics; the third one affects only the cone of La Fossa. Regional tectonic stress seems to play an important role in the transition of the volcanic system from a phase of stability to a phase of unrest, inducing the heating and the expansion of shallow hydrothermal fluids. Ground deformation at Vulcano may be linked to the geothermal system rather than magmatic sources

    Geophysical multidisciplinary investigation of the structure of an unstable flank: the NE sector of Mt. Etna.

    Get PDF
    Mount Etna is characterized by a complex regional tectonics with a N-S compression related to the Africa – Europe convergence that interacts with a WNW-ESE extension associated to the Malta Escarpment. A general eastward motion is present in the eastern flank. Although the existence of these phenomena is overt, the geometry of the sliding sector is still debated. The non-uniqueness of the geophysical inverse models and the different limitations in resolution and sensitivity of each technique spurred us to undertake, in the frame of the MEDiterranean Supersites Volcanoes (MED-SUV) project, a joint interpretation of independent data in order to better constrain the results. Seismic data come from the network run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) – Osservatorio Etneo, Sezione di Catania. The relocated seismicity defines two main seismogenic volumes in the NE sector of the volcano: the first cluster is related to the known Pernicana Fault system, while the second one is located southwards, beneath the northern wall of the Valle del Bove. The resistivity models come from a MT survey carried out on the eastern flank of the volcano and consisting of thirty broad-band soundings along N-S and NW-SE oriented profiles. The resistivity modeling of MT profiles reveal three major layers in a resistive-conductive-resistive sequence. A low resistivity volume is clearly identified on the NE flank of the volcano, between The Pernicana fault and the northern wall of the Valle del Bove. Ground deformation studies (GPS and InSAR) revealed the segmentation of the unstable flank and define the NE sector as the most mobile one; this sector is perfectly bounded by the two seismic clusters and corresponds to the low resistivity volume. The sliding surface modeled by ground deformation data inversions well matches in depth with a resistivity transition and with two seismogenic layers

    Atmospheric anomalies over Mt.Etna using GPS signal delays and tomography of radio wave velocities

    Get PDF
    Due to the prominent topography of Mt. Etna, the use of satellite geodetic techniques may significantly suffer from atmospheric heterogeneities. This problem mainly affects the DInSAR technique. To overcome these drawbacks the present study attempts to make headway in measuring and interpreting atmospheric anomalies. We used the GAMIT software to obtain the ZTD (Zenith Total Delay) values for the GPS sessions performed on 1996-97, during ERS-2 passes at Mt. Etna. GAMIT software also allows to characterize the statistical behaviour of the tropospheric effects, by using residuals for each station-satellite pair, and to locate the atmospheric anomalies, present mostly at low altitudes. The attempt at using these results to produce a tomography of radio waves velocity of the troposphere suggests that the number of GPS stations used to investigate atmosphere is a critical point in such a study. The three stations are too few to invert anomalies eventually existing in the lower atmosphere. This result is a good starting point for better direct future study to verify the applicability of this tomographic technique to a geodetic network with a higher number of stations, with the aim of characterizing the lower atmosphere of Mt. Etna for a more accurate monitoring of ground deformations

    INTERFÉROMÉTRIE RADAR APPLIQUÉE AUX VOLCANS : CAS DE L’ETNA ET DES CHAMPS PHLÉGRÉENS (ITALIE)

    Get PDF
    During the last few years, the radar images collected by the European satellites ERS1 and ERS2, the Japanese satellite JERS and the Canadian satellite RADARSAT have been used with success to create interferograms. This technique has been applied for geophysical applications like co-seismic deformation mapping, volcano deformation monitoring, landslides monitoring, mining subsidence detection, glaciers monitoring. Here we report the research carried out by our group on Etna volcano (Italy) and in the area of Naples (Italy) where are located several potentially active volcanoes (Vesuvius, Ischia) and where a subsidence of the caldera of Campi Flegrei is still on going in response to the 1982-1984 seismic crisis. Etna is the volcano that has been studied first using ERS SAR interferometry. Using this method, a large scale deflation of the volcano associated with the large 1991-1993 eruption was detected in data covering the second half of the eruption. Further studies showed that the local deformation fields located in Valle del Bove (East of the volcano) where associated with the compaction of the 1986-1987 and 1989 lava fields and also partly with a subsidence of the surrounding terrain in response to the load of the new deposited material. Other local deformation fields have been identified, corresponding to the 1983, 1981 and 1971 lava fields. However, due to its strong topography, interferograms of Etna are affected by tropospheric effects. Those effects must be eliminated in order to correctly interpret the fringes pattern. The problem of the troposphere has been first investigated from its theoretical point of view and using existing local meteorological data as well as radio-soundings data. Recently, thanks to the large amount of available interferograms, another approach has been investigated, consisting in the research of a correlation fringe/elevation in the interferograms themselves. This approach, operated either in automatic mode (automatic fringe unwrapping) or in manual mode proved to be efficient for most of the coherent interferograms. After removal of the tropospheric correction, the evolution of the deformation of the volcano at large scale between 1992 and 1998 has been inferred. The subsidence occurring during the second half of the 1992 eruption as well as the uplift preceding the 1995 unrest of the Southeast crater are visible, but their amplitude is less than previously estimated. The depth of the modelled source of subsidence/uplift related to the large scale deformation is of the order of 6 to 8 km, not well constrained by the data. The study of the correlation fringe/elevation was possible only after a detailed analysis of the spatial and temporal properties of coherence of the Etna area. Indeed, the technique of fringe unwrapping for fringe/elevation correlation analysis is possible only if the poorly coherent pixels are eliminated. A map of the most coherent pixels of the volcano was produced. The recent lava fields as well as the towns and villages surrounding the volcano are the most coherent areas. The quality of the interferograms is also enhanced when high accuracy DEM (Digital Elevation Model) are used. Using kinematic GPS data collected along more than 100 km of road around the volcano, we assessed the accuracy of several DEMs of Etna. The most accurate DEM was produced by digitising 1/25.000e maps of Etna. This DEM does not take into account the topographic changes due to the recent eruptions. Merging other more recent DEMs corresponding to those areas, we produced an updated relatively high accuracy DEM (±3 m) of Etna. In the Naples area, we analysed interferograms in the period 1993-1996 and show that the Campi Flegrei caldera is still subsiding at a rate of about 30 mm/year

    The Submarine Boundaries of Mount Etna’s Unstable Southeastern Flank

    Get PDF
    Coastal and ocean island volcanoes are renowned for having unstable flanks. This can lead to flank deformation on a variety of temporal and spatial scales ranging from slow creep to catastrophic sector collapse. A large section of these unstable flanks is often below sea level, where information on the volcano-tectonic structure and ground deformation is limited. Consequently, kinematic models that attempt to explain measured ground deformation onshore associated with flank instability are poorly constrained in the offshore area. Here, we attempt to determine the locations and the morpho-tectonic structures of the boundaries of the submerged unstable southeastern flank of Mount Etna (Italy). The integration of new marine data (bathymetry, microbathymetry, offshore seismicity, reflection seismic lines) and published marine data (bathymetry, seafloor geodesy, reflection seismic lines) allows identifying the lineament north of Catania Canyon as the southern lateral boundary with a high level of confidence. The northern and the distal (seaward) boundaries are less clear because no microbathymetric or seafloor geodetic data are available. Hypotheses for their locations are presented. Geophysical imaging suggests that the offshore Timpe Fault System is a shallow second-order structure that likely results from extensional deformation within the moving flank. Evidence for active uplift and compression upslope of the amphitheater-shaped depression from seismic data along with subsidence of the onshore Giarre Wedge block observed in ground deformation data leads us to propose that this block is a rotational slump, which moves on top of the large-scale instability. The new shoreline-crossing structural assessment may now inform and improve kinematic models

    GPS surveys in the foreland-foredeep tectonic system of Southeastern Sicily: first results

    Get PDF
    The Hyblean plateau (Southeastern Sicily) is characterised by three main tectonic structural trends: the first, NNW-SSE striking, runs on the easternmost part of the plateau and is linked to the Hyblean-Maltese fault system; the second runs along the western part of the plateau with a NNE-SSW direction and is characterised by a sinistral strike slip motion, like the Scicli fault; the third ENE-WSW striking, characterises the northernmost part of the area, including the Scordia-Lentini graben. We analysed GPS data collected in a dense network located in the northern area of the Hyblean plateau during 1998 and 2000, between the towns of Catania and Syracuse. Data from Noto, Matera and Cagliari IGS stations, were included in the processing to connect this network to the International Terrestrial Reference Frame (ITRF). The comparison between 1998 and 2000 data sets shows an average northward motion of the GPS stations located south of the Gela-Catania foredeep. Site velocities decrease from south to north and show a weak internal deformation of the northernmost part of the Hyblean plateau

    Decomposing DInSAR Time-Series into 3-D in Combination with GPS in the Case of Low Strain Rates: An Application to the Hyblean Plateau, Sicily, Italy

    Get PDF
    Differential Interferometric SAR (DInSAR) time-series techniques can be used to derive surface displacement rates with accuracies of 1 mm/year, by measuring the one-dimensional distance change between a satellite and the surface over time. However, the slanted direction of the measurements complicates interpretation of the signal, especially in regions that are subject to multiple deformation processes. The Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements (SISTEM) algorithm enables decomposition into a three-dimensional velocity field through joint inversion with GNSS measurements, but has never been applied to interseismic deformation where strain rates are low. Here, we apply SISTEM for the first time to detect tectonic deformation on the Hyblean Foreland Plateau in South-East Sicily. In order to increase the signal-to-noise ratio of the DInSAR data beforehand, we reduce atmospheric InSAR noise using a weather model and combine it with a multi-directional spatial filtering technique. The resultant three-dimensional velocity field allows identification of anthropogenic, as well as tectonic deformation, with sub-centimeter accuracies in areas of sufficient GPS coverage. Our enhanced method allows for a more detailed view of ongoing deformation processes as compared to the single use of either GNSS or DInSAR only and thus is suited to improve assessments of regional seismic hazard
    • …
    corecore