9 research outputs found

    Influence of physical activity on cancer development, treatment and prophylaxis

    Get PDF
    Activation of the growth factors pathways is involved in cell growth and proliferation and is associated with carcinogenesis. Many studies have shown an increase in blood growth factors concentrations after training. On the other hand, numerous organisations recommend physical activity in cancer therapy and prophylaxis. This two phenomena may actually cause confusion. The aim of this paper was to present findings on the significance of physical activity in course of neoplastic disease and dispel doubts concerning its role in cancer treatment

    Photoelectrochemical and thermal characterization of aromatic hydrocarbons substituted with a dicyanovinyl unit

    Get PDF
    Seven aromatic hydrocarbons bearing a dicyanovinyl unit were prepared to determine the relationship between both the number of aromatic rings and location of acceptor substituent on their thermal and optoelectronic properties. Additionally, the density functional theory calculations were performed. The obtained compounds showed temperatures of the beginning of thermal decomposition in the range of 137 – 289 °C, being above their respective melting points found between 88 and 248 °C. They were electrochemically active and showed quasi-reversible reduction process (except for 2-(phen-1- yl)methylene)malononitrile). Electrochemically estimated energy band gaps were below 3.0 eV, in the range of 2.10 – 2.50 eV. The absorption and emission spectra were recorded in CHCl3 and NMP and in solid state. All compounds strongly absorbed radiation with absorption maximum ranging from 307 to 454 nm ascribed to the intramolecular charge transfer between the donor and acceptor units. The aromatic hydrocarbons were luminescent in all investigated media and exhibited higher photoluminescence quantum yields in the solid state due to the aggregation induced emission phenomena. Electroluminescence ability of selected compounds was tested in a diode with guest-host configuration. Additionally, the selected compound together with a commercial N719 was applied in the dye-sensitized solar cell

    Impact of TiO2 nanostructures on dye-sensitized solar cells performance

    Get PDF
    The effect of TiO2 nanostructures such as nanoparticles, nanowires, nanotubes on photoanode properties, and dye-sensitized solar cells photovoltaic parameters were studied. The series of dye-sensitized solar cells based on two dyes, that is, commercially N719 and synthesized 3,70- bis(2-cyano-1-acrylic acid)-10-ethyl-phenothiazine were tested. Additionally, the devices containing a mixture of this sensitizer and chenodeoxycholic acid as co-adsorbent were fabricated. The amount of adsorbed dye molecules to TiO2 was evaluated. The prepared photoanodes with different TiO2 nanostructures were investigated using UV-Vis spectroscopy, optical, atomic force, and scanning electron microscopes. Photovoltaic response of constructed devices was examined based on currentvoltage characteristics and electrochemical impedance spectroscopy measurements. It was found that the highest UV-Vis absorption exhibited the photoanode with nanotubes addition. This indicates the highest number of sensitizer molecules anchored to the titanium dioxide photoanode, which was subsequently confirmed by dye-loading tests. The highest power conversion efficiency was (6.97%) for solar cell containing nanotubes and a mixture of the dyes with a co-adsorbent

    Luminescence and electrochemical activity of new unsymmetrical 3- imino-1,8-naphthalimide derivatives

    Get PDF
    A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120–164 C and underwent thermal decomposition above 280 C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest–host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging

    Surface Relief Modulated Grating in Azo Polymer—From the Tailoring of Diffraction Order to Reshaping of a Laser Beam

    No full text
    Among light-responsive materials for photonics, azo polymers occupy an important position due to their optical response and the related concepts of consecutive applications. However, scientific insight is still needed to understand the effects of irradiation on the modification of the azo polymer structure and the effect of this modification on incoming probing light. In this work, we report on a surface relief grating with a maximum depth of a record-high value of 1.7 µm, inscribed holographically in a custom synthesized glassy azo polymer belonging to the poly(ether imide) family. We show that the specifically deformed polymer, forming an amplitude-modulated relief grating, has a unique dual effect on an incoming light beam of different diameters. When illuminated by a narrow probe beam, the structure acts as a variable-depth grating, enabling a continuous tuning of the diffraction efficiencies in the entire theoretically predicted range and, thus, generating or eliminating diffracted waves of specified order. Alternatively, when illuminated by a wide probe beam, the whole structure acts as an optical component reshaping the Gaussian light intensity profile into the profiles resembling the squares of Bessel functions of the zeroth- or higher orders. Moreover, a physical justification of the effects observed is provided

    Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia

    No full text
    Iron deficiency anemia (IDA) is very common and affects approximately 1/3 of the world’s human population. There are strong research data that some probiotics, such as Lactobacillus acidophilus and Bifidobacterium longum improve iron absorption and influence the course of anemia. Furthermore, prebiotics, including galactooligosaccharides (GOS) and fructooligosaccharides (FOS), increase iron bioavailability and decrease its destructive effect on the intestinal microbiota. In addition, multiple postbiotics, which are probiotic metabolites, including vitamins, short-chain fatty acids (SCFA), and tryptophan, are involved in the regulation of intestinal absorption and may influence iron status in humans. This review presents the actual data from research studies on the influence of probiotics, prebiotics, and postbiotics on the prevention and therapy of IDA and the latest findings regarding their mechanisms of action. A comparison of the latest research data and theories regarding the role of pre-, post-, and probiotics and the mechanism of their action in anemias is also presented and discussed

    FBXL4 deficiency increases mitochondrial removal by autophagy

    No full text
    Abstract Pathogenic variants in FBXL4 cause a severe encephalopathic syndrome associated with mtDNA depletion and deficient oxidative phosphorylation. To gain further insight into the enigmatic pathophysiology caused by FBXL4 deficiency, we generated homozygous Fbxl4 knockout mice and found that they display a predominant perinatal lethality. Surprisingly, the few surviving animals are apparently normal until the age of 8–12 months when they gradually develop signs of mitochondrial dysfunction and weight loss. One‐year‐old Fbxl4 knockouts show a global reduction in a variety of mitochondrial proteins and mtDNA depletion, whereas lysosomal proteins are upregulated. Fibroblasts from patients with FBXL4 deficiency and human FBXL4 knockout cells also have reduced steady‐state levels of mitochondrial proteins that can be attributed to increased mitochondrial turnover. Inhibition of lysosomal function in these cells reverses the mitochondrial phenotype, whereas proteasomal inhibition has no effect. Taken together, the results we present here show that FBXL4 prevents mitochondrial removal via autophagy and that loss of FBXL4 leads to decreased mitochondrial content and mitochondrial disease
    corecore