10 research outputs found

    The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Epidemiological Studies

    Get PDF
    Persistent organic pollutants (POPs) are considered as potential obesogens that may affect adipose tissue development and functioning, thus promoting obesity. However, various POPs may have different mechanisms of action. The objective of the present review is to discuss the key mechanisms linking exposure to POPs to adipose tissue dysfunction and obesity. Laboratory data clearly demonstrate that the mechanisms associated with the interference of exposure to POPs with obesity include: (a) dysregulation of adipogenesis regulators (PPARĪ³ and C/EBPĪ±); (b) affinity and binding to nuclear receptors; (c) epigenetic effects; and/or (d) proinflammatory activity. Although in vivo data are generally corroborative of the in vitro results, studies in living organisms have shown that the impact of POPs on adipogenesis is affected by biological factors such as sex, age, and period of exposure. Epidemiological data demonstrate a significant association between exposure to POPs and obesity and obesity-associated metabolic disturbances (e.g., type 2 diabetes mellitus and metabolic syndrome), although the existing data are considered insufficient. In conclusion, both laboratory and epidemiological data underline the significant role of POPs as environmental obesogens. However, further studies are required to better characterize both the mechanisms and the dose/concentration-response effects of exposure to POPs in the development of obesity and other metabolic diseases.publishedVersio

    Nickel as a potential disruptor of thyroid function: benchmark modelling of human data

    Get PDF
    IntroductionNickel (Ni) is one of the well-known toxic metals found in the environment. However, its influence on thyroid function is not explored enough. Hence, the aim of this study was to analyse the potential of Ni to disrupt thyroid function by exploring the relationship between blood Ni concentration and serum hormone levels (TSH, T4, T3, fT4 and fT3), as well as the parameters of thyroid homeostasis (SPINA-GT and SPINA-GD) by using correlation analysis and Benchmark (BMD) concept.MethodsNi concentration was measured by ICP-MS method, while CLIA was used for serum hormone determination. SPINA Thyr software was used to calculate SPINA-GT and SPINA-GD parameters. BMD analysis was performed by PROAST software (70.1). The limitations of this study are the small sample size and the uneven distribution of healthy and unhealthy subjects, limited confounding factors, as well as the age of the subjects that could have influenced the obtained results.Results and discussionThe highest median value for blood Ni concentration was observed for the male population and amounted 8,278 Āµg/L. Accordingly, the statistically significant correlation was observed only in the male population, for Ni-fT4 and Ni-SPINA-GT pairs. The existence of a dose-response relationship was established between Ni and all the measured parameters of thyroid functions in entire population and in both sexes. However, the narrowest BMD intervals were obtained only in men, for Ni - SPINA-GT pair (1.36-60.9 Āµg/L) and Ni - fT3 pair (0.397-66.8 Āµg/L), indicating that even 78.68 and 83.25% of men in our study might be in 10% higher risk of Ni-induced SPINA-GT and fT3 alterations, respectively. Due to the relationship established between Ni and the SPINA-GT parameter, it can be concluded that Ni has an influence on the secretory function of the thyroid gland in men. Although the further research is required, these findings suggest possible role of Ni in thyroid function disturbances

    Three lines of evidence of the hepatotoxicity young researchers of a mixture containing phthalates and bisphenol a: in silico and two in vivo models

    Get PDF
    The extensive usage of bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and bisphenol A (BPA) creates a lot of opportunities for combined human exposure to these hazardous compounds in everyday life and a variety of negative outcomes, including hepatotoxicity. In silico research and two in vivo models were used to investigate the links between a mixture including DEHP, DBP and BPA and liver injury. Bioinformatic analysis was performed by Comparative Toxicogenomics Database, ShinyGO, ToppCluster, and Cytoscape. In vivo subacute study included five groups of rats (n = 6): (1) Control: corn oil, (2) DEHP: 50 mg/kg b.w./day, (3) DBP: 50 mg/kg b.w./day, (4) BPA: 25 mg/kg b.w./day, (5) MIX: DEHP + DBP + BPA. Zebrafish embryos were exposed to the investigated substances in multiple dosages, both alone and in combination (binary and ternary mixtures). Liver damage was linked to 75 DEHP, DBP, and BPA genes, the majority of which were associated with inflammation/oxidative stress, identified as the most relevant molecular pathways. In rats, significant changes in redox status/bioelementsā€™ level and pathohistology were more pronounced or evident only in MIX group, suggesting probable additivity. In a dose-dependent manner, BPA reduced the liver area (LA) index. LA values were decreased by DEHP (2 Ī¼g/mL) and DBP (5 Ī¼g/mL), whereas LA index was raised by their higher concentrations. In binary mixtures, DBP had a lethal effect at the two highest concentrations, whereas BPA directed hepatotoxicity of the DEHP/DBP/BPA mixture

    MicroRNA-Regulated Signaling Pathways: Potential Biomarkers for Pancreatic Ductal Adenocarcinoma

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3ā€²-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC

    Arsenic toxicity: Molecular targets and therapeutic agents

    No full text
    High arsenic (As) levels in food and drinking water, or under some occupational conditions, can precipitate chronic toxicity and in some cases cancer. Millions of people are exposed to unacceptable amounts of As through drinking water and food. Highly exposed individuals may develop acute, subacute, or chronic signs of poisoning, characterized by skin lesions, cardiovascular symptoms, and in some cases, multi-organ failure. Inorganic arsenite(III) and organic arsenicals with the general formula R-As2+ are bound tightly to thiol groups, particularly to vicinal dithiols such as dihydrolipoic acid (DHLA), which together with some seleno-enzymes constitute vulnerable targets for the toxic action of As. In addition, R-As2+-compounds have even higher affinity to selenol groups, e.g., in thioredoxin reductase that also possesses a thiol group vicinal to the selenol. Inhibition of this and other ROS scavenging seleno-enzymes explain the oxidative stress associated with arsenic poisoning. The development of chelating agents, such as the dithiols BAL (dimercaptopropanol), DMPS (dimercapto-propanesulfonate) and DMSA (dimercaptosuccinic acid), took advantage of the fact that As had high affinity towards vicinal dithiols. Primary prevention by reducing exposure of the millions of people exposed to unacceptable As levels should be the prioritized strategy. However, in acute and subacute and even some cases with chronic As poisonings chelation treatment with therapeutic dithiols, in particular DMPS appears promising as regards alleviation of symptoms. In acute cases, initial treatment with BAL combined with DMPS should be considered

    An Integrative in Silico Drug Repurposing Approach for Identification of Potential Inhibitors of SARS-CoV-2 Main Protease

    No full text
    Aims: An infectious disease (COVID-19) caused by the coronavirus SARS-CoV-2 emerged in Wuhan, China in December 2019. Currently, SARS-CoV-2 infected more than 9 million people and caused more than 450 000 deaths. Considering the urgent need for novel therapeutics, drug repurposing approach might offer rapid solutions comparing to de novo drug design. In this study, we investigated an integrative in silico drug repurposing approach as a valuable tool for rapid selection of potential candidates against SARS-CoV-2 Main Protease (Mpro).Main methods: To screen FDA-approved drugs, we designed an integrative in silico drug repurposing approach implementing structure-based molecular modelling techniques, physiologically-based pharmacokinetic (PBPK) modelling of drugs disposition and data-mining analysis of drug-gene-COVID-19 association.Key findings: Through the presented approach, 43 candidates with potential inhibitory effect on Mpro were selected and further evaluated according to the predictions of tissue disposition, drug-gene-COVID-19 associations and potential pleiotropic effects. We singled out 9 FDA approved drugs as the most promising for their profiling in COVID-19 drug discovery campaigns. Our results were in agreement with current experimental findings, which validate the applied integrative approach and may support clinical decisions for a novel epidemic wave of COVID-19.Significance: To the best of our knowledge, this is the first integrative in silico repurposing study for COVID-19 with a clear advantage in linking structure-based molecular modeling of Mpro inhibitors with predictions of tissue disposition, drug-gene-COVID-19 associations and prediction of pleiotropic effects of selected candidates.</div

    Puzzling relationship between levels of toxic metals in blood and serum levels of reproductive hormones: Benchmark dose approach in cross-sectional study

    No full text
    Reproductive disorders and infertility have become more common recently among the general population. Toxic metals are known as endocrine disruptors and as they are widespread in nature they may be linked to reproductive problems. This study was conducted as a cross-sectional study and its aim was to examine the doseā€“response relationship between cadmium, arsenic, mercury, chromium and nickel and serum hormone levels of testosterone (women) and estradiol and progesterone (men) using the Benchmark dose approach (BMD). Blood samples were collected from 218 women and 217 men digested in a microwave, and the levels of the tested metals were determined by atomic absorption spectrophotometry (AAS) or inductively coupled plasma-mass spectrometry (ICP-MS). Doseā€“response analysis was performed in PROAST software (version 70.1). The model averaging method was used to calculate the Benchmark dose interval (BMDI). A doseā€“response relationship has been established between all metals and hormones. The narrowest BMDI was found for the As-testosterone and Hg-testosterone. Levels estimated to produce the extra risk of testosterone serum levels disturbances of 10% were lower than median levels measured in the general population. Moreover, this research suggests the possibility of use of the BMD approach in analyzing data pool generated from extensive human-biomonitoring studies

    Sulforaphaneā€”A Compound with Potential Health Benefits for Disease Prevention and Treatment: Insights from Pharmacological and Toxicological Experimental Studies

    Get PDF
    Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFNā€™s ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFNā€™s potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies
    corecore