54 research outputs found

    Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries

    Get PDF
    Honeybees are of great importance because of their role in pollination as well as for hive products. The population of managed colonies fluctuates over time, and recent monitoring reports show different levels of colony losses in many regions and countries. The cause of this kind of loss is a combination of various factors, such as the parasitic mite Varroa destructor, viruses, pesticides, management practices, climate change, and other stress factors. Having in mind that the economic aspect of honeybee colony losses has not been estimated, a pioneer effort was made for developing a methodology that estimates the economic impact of honeybee colony losses. Winter loss data was based on 2993 answers of the COLOSS standard questionnaire survey of honeybee winter colony losses for 2016/2017. In addition, market and financial data were used for each country. In a comparative analysis, an assessment on the economic impact of colony losses in Austria, Czechia, and Macedonia was made. The estimation considered the value of the colonies and the potential production losses of the lost colonies and of surviving but weak colonies. The direct economic impact of winter honeybee colony losses in 2016/2017 in Austria was estimated to be about 32 Mio; in Czechia, 21 Mio; and in Macedonia, 3 Mio. Economic impact reflects the different value levels in the three countries, national colony populations, and the magnitude of colony losses. This study also suggests that economic losses are much higher than the subsidies, which underlines the economic importance of honeybees for the agricultural sector

    Cutting corners: The impact of storage and DNA extraction on quality and quantity of DNA in honeybee (Apis mellifera) spermatheca

    Get PDF
    The purpose of our study was to investigate methods of short-term storage that allow preservation, transport and retrieval of genetic information contained in honeybee queen's spermatheca. Genotyping of the honeybee colony requires well ahead planned sample collection, depending on the type of data to be acquired. Sampling and genotyping of spermatheca's content instead of individual offspring is timesaving, allowing answers to the questions related to patriline composition immediately after mating. Such procedure is also cheaper and less error prone. For preservation either Allprotect Tissue Reagent (Qiagen) or absolute ethanol were used. Conditions during transportation were simulated by keeping samples 6-8 days at room temperature. Six different storing conditions of spermathecas were tested, complemented with two DNA extraction methods. We have analysed the concentration of DNA, RNA, and proteins in DNA extracts. We also analysed how strongly the DNA is subjected to fragmentation (through amplification of genetic markers ANT2 and tRNA(leu)-COX2) and whether the quality of the extracted DNA is suitable for microsatellite (MS) analysis. Then, we tested the usage of spermatheca as a source of patriline composition in an experiment with three instrumentally inseminated virgin queens and performed MS analysis of the extracted DNA from each spermatheca, as well as queens' and drones' tissue. Our results show that median DNA concentration from spermathecas excised prior the storage, regardless of the storing condition and DNA extraction method, were generally lower than median DNA concentration obtained from spermathecas dissected from the whole queens after the storage. Despite the differences in DNA yield from the samples subjected to different storing conditions there was no significant effect of storage method or the DNA extraction method on the amplification success, although fewer samples stored in EtOH amplified successfully in comparison to ATR storing reagent. However, we recommend EtOH as a storing reagent due to its availability, low price, simplicity in usage in the field and in the laboratory, and capability of good preservation of the samples for DNA analysis during transport at room temperature

    Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008-9 and 1009-10

    Get PDF
    In 2008 the COLOSS network was formed by honey bee experts from Europe and the USA. The primary objectives set by this scientific network were to explain and to prevent large scale losses of honey bee (Apis mellifera) colonies. In June 2008 COLOSS obtained four years support from the European Union from COST and was designated as COST Action FA0803 – COLOSS (Prevention of honey bee COlony LOSSes). To enable the comparison of loss data between participating countries, a standardized COLOSS questionnaire was developed. Using this questionnaire information on honey bee losses has been collected over two years. Survey data presented in this study were gathered in 2009 from 12 countries and in 2010 from 24 countries. Mean honey bee losses in Europe varied widely, between 7-22% over the 2008-9 winter and between 7-30% over the 2009-10 winter. An important finding is that for all countries which participated in 2008-9, winter losses in 2009-10 were found to be substantially higher. In 2009-10, winter losses in South East Europe were at such a low level that the factors causing the losses in other parts of Europe were absent, or at a level which did not affect colony survival. The five provinces of China, which were included in 2009-10, showed very low mean (4%) A. mellifera winter losses. In six Canadian provinces, mean winter losses in 2010 varied between 16-25%, losses in Nova Scotia (40%) being exceptionally high. In most countries and in both monitoring years, hobbyist beekeepers (1-50 colonies) experienced higher losses than practitioners with intermediate beekeeping operations (51-500 colonies). This relationship between scale of beekeeping and extent of losses effect was also observed in 2009-10, but was less pronounced. In Belgium, Italy, the Netherlands and Poland, 2008-9 mean winter losses for beekeepers who reported ‘disappeared’ colonies were significantly higher compared to mean winter losses of beekeepers who did not report ‘disappeared’ colonies. Mean 2008-9 winter losses for those beekeepers in the Netherlands who reported symptoms similar to “Colony Collapse Disorder” (CCD), namely: 1. no dead bees in or surrounding the hive while; 2. capped brood was present, were significantly higher than mean winter losses for those beekeepers who reported ‘disappeared’ colonies without the presence of capped brood in the empty hives. In the winter of 2009-10 in the majority of participating countries, beekeepers who reported ‘disappeared’ colonies experienced higher winter losses compared with beekeepers, who experienced winter losses but did not report ‘disappeared’ colonies

    Evaluation of Suppressed Mite Reproduction (SMR) Reveals Potential for Varroa Resistance in European Honey Bees (Apis melliferaL.)

    Get PDF
    Simple Summary The miteVarroa destructorrepresents a great threat to honey bees and the beekeeping industry. The opportunity to select and breed honey bees that are naturally able to fight the mite stands a sustainable solution. This can be achieved by evaluation of the failure of mite reproduction (SMR, suppressed mite reproduction). We conducted a large European experiment to assess the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee populations. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Our results indicate that it is necessary to examine at least 35 brood cells infested by a single mite to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores, indicating that this trait is present within the European honey bee populations. No major differences could be identified between countries for a given population, or between populations in different countries. This study shows the potential to increase selection efforts to breedV. destructorhoney bee resistant populations. In the fight against theVarroa destructormite, selective breeding of honey bee (Apis melliferaL.) populations that are resistant to the parasitic mite stands as a sustainable solution. Selection initiatives indicate that using the suppressed mite reproduction (SMR) trait as a selection criterion is a suitable tool to breed such resistant bee populations. We conducted a large European experiment to evaluate the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee genotypes with their local mite parasites. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Simulation results indicate that it is necessary to examine at least 35 single-infested cells to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores indicating that this trait is present within the European honey bee populations. The trait is highly variable between colonies and some countries, but no major differences could be identified between countries for a given genotype, or between genotypes in different countries. This study shows the potential to increase selective breeding efforts ofV. destructorresistant populations

    Delegated Investment Management in Alternative Assets

    No full text

    The Balkan regional security aspect – impact of the Macedonian - Greek conflict

    Get PDF
    The Balkan is constantly latent unsecure region in Europe. Permanent conflict processes between the countries of the region, historically move in the spectrum of the phase of the escalation of violence to phases of constant latency, but almost never in conflict resolution phase. As a result of persistent and latent conflicts at best, the Balkan is a region that is constantly able to export instability. Long-standing conflict between Greece and Macedonia has a permanent impact on regional security. As a result of long-term failure to Greek- Macedonian conflict process and the absurdity of this whole conflict, it affects the emergence of new political-economic conflicts in the region. This paper will attempt to briefly present the impacts that Greek-Macedonian conflict has on achieving regional security. Through maintaining the conflict process and causing exclusion of the region in the European security space can export constant instability. This instability is particularly true of the Republic of Macedonia endangering its security and emphasizing the European security space

    Pension Fund Asset Allocation and Liability Discount Rates: Camouflage and Reckless Risk Taking by U.S. Public Plans?

    Get PDF
    We use an international pension fund database to compare the asset allocation and liability discount rates of public and non-public funds in the U.S., Canada and Europe. We document that U.S. public funds exploit the opaque incentives provided by their distinct regulatory environment and behave very differently from U.S. corporate funds and both public and non-public pension funds in Canada and Europe. In the past two decades, U.S. public funds uniquely increased their allocation to riskier investment strategies in order to maintain high discount rates and present lower liabilities, especially if their proportion of retired members increased more. In line with economic theory, all other groups of pension funds reduced their allocation to risky assets as they mature, and lowered discount rates as riskless interest rates declined. The arguably camouflaging and risky behavior of U.S. public pension plans seems driven by the conflict of interest between current and future stakeholders, and could result in significant costs to future workers and taxpayers

    The intelligent transport systems – Risks and Benefits

    Get PDF
    Effective deployment of ITS technologies depends in part on the knowledge of which technologies will most effectively address the issues of congestion and safety. Thus, it is important to understand the benefits or risks of both existing and emerging technologies. Based on documented experience locally and throughout the country, ITS deployments in urban areas have the potential to offer the following benefits: • Arterial management systems can potentially reduce delays with the implementation of advanced control systems and traveler information dissemination. • Freeway management systems can reduce the occurrence of crashes, increase capacity, and decrease overall travel times. • Freight management systems reduce costs to motor carriers with the implementation of the commercial vehicle information systems and networks. • Transit management systems may reduce travel times and increased reliability with automatic vehicle location and transit signal priority implementation. • Incident management systems potentially reduce incident duration and offer numerous other benefits. There is a wide range of benefits that can be obtained from ITS deployments. For example, fuel consumption, travel time, and delay can be reduced. ITS deployments can also result in higher travel speeds, improved traffic flow, and more satisfied travelers for all modes
    corecore