20 research outputs found

    Lactate dehydrogenase A inhibitors with a 2,8-dioxabicyclo[3.3.1]nonane scaffold: A contribution to molecular therapies for primary hyperoxalurias

    Get PDF
    Human lactate dehydrogenase A (hLDHA) is one of the main enzymes involved in the pathway of oxalate synthesis in human liver and seems to contribute to the pathogenesis of disorders with endogenous oxalate overproduction, such as primary hyperoxaluria (PH), a rare life-threatening genetic disease. Recent published results on the knockdown of LDHA gene expression as a safe strategy to ameliorate oxalate build-up in PH patients are encouraging for an approach of hLDHA inhibition by small molecules as a potential pharmacological treatment. Thus, we now report on the synthesis and hLDHA inhibitory activity of a new family of compounds with 2,8-dioxabicyclo[ 3.3.1]nonane core (23–42), a series of twenty analogues to A-type proanthocyanidin natural products. Nine of them (25–27, 29–34) have shown IC50 values in the range of 8.7–26.7 μM, based on a UV spectrophotometric assay, where the hLDHA inhibition is measured according to the decrease in absorbance of the cofactor β-NADH (340 nm). Compounds 25, 29, and 31 were the most active hLDHA inhibitors. In addition, the inhibitory activities of those nine compounds against the hLDHB isoform were also evaluated, finding that all of them were more selective inhibitors of hLDHA versus hLDHB. Among them, compounds 32 and 34 showed the highest selectivity. Moreover, the most active hLDHA inhibitors (25, 29, 31) were evaluated for their ability to decrease the oxalate production by hyperoxaluric mouse hepatocytes (PH1, PH2 and PH3) in vitro, and the relative oxalate output at 24 h was 16% and 19 % for compounds 25 and 31, respectively, in Hoga1-/- mouse primary hepatocyte cells (a model for PH3). These values improve those of the reference compound used (stiripentol). Compounds 25 and 31 have in common the presence of two hydroxyl groups at rings B and D and an electron-withdrawing group (NO2 or Br) at ring A, pointing to the structural features to be taken into account in future structural optimization.Spanish Ministerio de Ciencia, Innovacion y Universidades - FEDER funds of the European Union RTI2018-098560-B-C21 RTI2018-098560-B-C22Centro de Instrumentacion Cientifico-Tecnica (CICT) of the University of Jaen, SpainUniversity of JaenAndalusian Consejeria de Economia y Conocimiento (FEDER program 2014-2020) 1380682European Youth Guarantee contrac

    Chemical evolution of the colour systems generated by riccionidin A, 3-deoxyanthocyanidins and anthocyanins

    Get PDF
    UIDB/50006/2020 MEX/Ref. 288188The kinetics and thermodynamics (in acidic solutions) of the five chemical species reversibly interconnected by external stimuli (a multistate), such as pH and light, generated by the liverworts colorant riccionidin A were investigated. The degradation products of the multistate formed after 10 days at neutral pH were identified. The behaviour of riccionidin A multistate was compared with previous results reported for the equivalent systems based on 3-deoxyanthocyanidins (found in mosses and ferns) and anthocyanins (ubiquitous in angiosperms). The five chemical species have mutatis mutandis similar structures in the three multistates. The most dramatic difference is the extremely slow interconversion rate between flavylium cation and trans-chalcone in riccionidin A and related compounds multistates (tens of days) when compared with deoxyanthocyanins (a few days) and anthocyanins (several hours), at room temperature. The mole fraction distribution of the five species that constitute the multistate as a function of pH is also different in the three families of compounds. Some considerations regarding the chemical evolution of the three systems are given.authorsversionpublishe

    Light-Mediated Toxicity of Porphyrin-Like Pigments from a Marine Polychaeta

    Get PDF
    PTDC/MAR BIO/01132014 PTDC/BTA-BTA/28650/2017 UID/Multi/04378/2020 UID/QUI/50006/2020 ref. FA_05_2017_007Porphyrins and derivatives form one of the most abundant classes of biochromes. They result from the breakdown of heme and have crucial physiological functions. Bilins are well-known representatives of this group that, besides significant antioxidant and anti-mutagenic properties, are also photosensitizers for photodynamic therapies. Recently, we demonstrated that the Polychaeta Eulalia viridis, common in the Portuguese rocky intertidal, holds a high variety of novel greenish and yellowish porphyrinoid pigments, stored as granules in the chromocytes of several organs. On the follow-up of this study, we chemically characterized pigment extracts from the worm's skin and proboscis using HPLC and evaluated their light and dark toxicity in vivo and ex vivo using Daphnia and mussel gill tissue as models, respectively. The findings showed that the skin and proboscis have distinct patterns of hydrophilic or even amphiphilic porphyrinoids, with some substances in common. The combination of the two bioassays demonstrated that the extracts from the skin exert higher dark toxicity, whereas those from the proboscis rapidly exert light toxicity, then becoming exhausted. One particular yellow pigment that is highly abundant in the proboscis shows highly promising properties as a natural photosensitizer, revealing that porphyrinoids from marine invertebrates are important sources of these high-prized bioproducts.publishersversionpublishe

    Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us

    Get PDF
    Anthocyanins are the basis of the color of angiosperms, 3-deoxyanthocyanins and sphagnorubin play the same role in mosses and ferns, and auronidins are responsible for the color in liverworts. In this study, the color system of cyanidin-3-O-glucoside (kuromanin) as a representative compound of simpler anthocyanins was fully characterized by stopped flow. This type of anthocyanin cannot confer significant color to plants without intra- or intermolecular interactions, complexation with metals or supramolecular structures as in Commelina communis. The anthocyanin's color system was compared with those of 3-deoxyanthocyanins and riccionidin A, the aglycone of auronidins. The three systems follow the same sequence of chemical reactions, but the respective thermodynamics and kinetics are dramatically different.info:eu-repo/semantics/publishedVersio

    Thermal and photochemical reactions of n-pyridinebenzopyrylium multistate of species (n = 2′,3′,4′). Exploring the synthetic potentialities from the unique reactivity of position 2′

    Get PDF
    Funding Information: This work was supported by the Associate Laboratory for Green Chemistry – LAQV (projects UIDB/50006/2020 and UIDP/ 50006/2020), the Research Unit on Applied Molecular Biosciences – UCIBIO (projects UIDP/04378/2020 and UIDB/ 04378/2020) and the Associate Laboratory Institute for Health and Bioeconomy – i4HB (project LA/P/0140/2020) which are financed by national funds from FCT/MCTES. FCT/MCTES is also acknowledged for supporting the National Portuguese NMR Network (ROTEIRO/0031/2013–PINFRA/22161/2016, cofinanced by FEDER through COMPETE 2020, POCI, PORL, and FCT through PIDDAC). A. C. acknowledges financing from Fundação Calouste Gulbenkian, grant no. 219201, and from the Angolan Embassy in Lisbon, Portugal, INAGBE grant. Dr. Ramesh Pandian is acknowledged for the initial acquisition and processing of single crystal X-ray data. Publisher Copyright: © 2023 The Author(s)The kinetics and thermodynamics of the pH-dependent multistate of species generated by the trans-chalcone of n-pyridinebenzopyrylium (n = 2′, 3′) were studied by UV–vis spectroscopy, 1H NMR and HPLC-MS, and the results compared with those reported for n = 4′. Due to the slow kinetics of the multistate species interconversion, the conjugation of these techniques has shown to be a powerful tool to investigate the behaviour of these systems. The species involved in the multistate are mutatis mutandis the same observed in anthocyanins and related compounds except for the flavylium cation, which was not observed in these systems even in very acidic medium. The rates of the interconversion of the multistate species upon pH stimuli are much slower than in anthocyanins. The compound bearing the pyridine nitrogen in position 2′ gives two novel products absorbing in the visible. Formation of the new products is particularly efficient from the thermal evolution of the photochemical products obtained upon light irradiation of the protonated trans-chalcone in a mixture of methanol:acidic water (1:1). This confirms the unique capacity of the substituents in position 2′ in giving intramolecular reactions involving the benzopyrylium core. Crystal structures for the three pyridine chalcone compounds (n = 2′, 3′, 4′) were obtained and the respective structures discussed.publishersversionpublishe

    A model compound for pyridinechalcone-based multistate systems. Ring opening-closure as the slowest kinetic step of the multistate

    Get PDF
    UID/QUI/50006/2019. PTDC/QEQ-QFI/1971/2014. PTDC/QUI-COL/32351/2017. PTDC/QUI-QFI/30951/2017. grant no. 219201.Anthocyanins and related flavylium derivatives exist in aqueous solution as a pH-dependent mole fraction distribution of species (a multistate system) with known biological activity. Introduction of nitrogen heterocycles in the flavylium core can lead to multistates with different constitution and increased activity. Compound 1, a diethylamino derivative of 4-pyridinechalcone, was synthesized and characterized by X-ray crystallography, showing a pH-dependent reaction network similar to anthocyanins and related compounds. The several species present at the equilibrium multistate were fully characterized by 1H NMR and 13C NMR. The thermodynamics and kinetics of the multistate were studied through pH jumps followed by 1H NMR and UV-vis absorption including stopped-flow for the faster kinetic steps. In the parent 4-pyridinechalcone compound, protonation of the pyridine nitrogen for pH 4 prevents formation of the flavylium cation. In compound 1, the first protonation takes place in the diethylamino substituent and in acidic medium, two new flavylium derivatives, a single (2 pH 4) and a double (pH 1) positively charged species, in equilibrium with protonated hemiketal, cis and trans chalcones, have been characterized. Differently from anthocyanins and related compounds, experimental evidence for an unexpected very slow (0.0003 s-1) ring opening-closure between the hemiketal and the cis-chalcone (tautomerization) was achieved.publishe

    A diagnostic tool for assessing the conservation condition of cellulose nitrate and acetate in heritage collections: quantifying the degree of substitution by infrared spectroscopy

    Get PDF
    Abstract Cellulose nitrate and acetate are materials at risk in heritage collections because it is not possible to predict the evolution of their conservation state over time. Knowing that the degree of substitution (DS) of these materials correlates with their state of conservation because the fundamental degradation mechanism is hydrolysis, in this work, DS was measured in historical objects and artworks. Infrared spectra were used to develop and optimize calibration curves for cellulose nitrate and acetate references that were next applied to calculate DS values of heritage objects. The extent of hydrolysis measured, with this tool, correlated well with the physical deterioration assessed through the sample hardness (Shore A) which was measured with a Durometer. Calibration curves were optimized in reference materials by Attenuated Total Reflectance (ATR-FTIR) and Micro Fourier Transform Infrared Spectroscopy (μFTIR). The DS values of the AC reference materials was previously calculated by nuclear magnetic resonance spectroscopy. The calibration curves were obtained plotting DS as a function of the ratio between a reference peak (which does not suffer relevant changes during degradation) and selected peaks that monitor the degradation for cellulose acetate and nitrate polymers (avoiding the interference of plasticizers). The reference peak for both was the COC stretching mode (νCOC). The probe peak was, for cellulose nitrate, the NO2 asymmetric stretching (νaNO2) and, for cellulose acetate, the OH stretching mode (νOH). This ratio was then applied to calculate DS values of historical materials, in good and poor conservation condition; in situ by ATR, and in micro-samples collected from artworks by μFTIR. This selection comprises cinematographic and photographic films dated from the 1890s to the 1960s, and contemporary works of art made with cellulose acetate sheets by Portuguese artist José Escada dated from the 1960s. Finally, by comparison with the original estimated DS values, we show how this tool permits to define the state of degradation of these complex polymer matrixes. Thus, establishing the quantification of the DS as a novel tool to monitor the degradation of cellulose ester plastics, contributing in this way for a sustainable preservation of an irreplaceable heritage

    Synthesis and <i>h</i>LDH Inhibitory Activity of Analogues to Natural Products with 2,8-Dioxabicyclo[3.3.1]nonane Scaffold

    No full text
    Human lactate dehydrogenase (hLDH) is a tetrameric enzyme present in almost all tissues. Among its five different isoforms, hLDHA and hLDHB are the predominant ones. In the last few years, hLDHA has emerged as a therapeutic target for the treatment of several kinds of disorders, including cancer and primary hyperoxaluria. hLDHA inhibition has been clinically validated as a safe therapeutic method and clinical trials using biotechnological approaches are currently being evaluated. Despite the well-known advantages of pharmacological treatments based on small-molecule drugs, few compounds are currently in preclinical stage. We have recently reported the detection of some 2,8-dioxabicyclo[3.3.1]nonane core derivatives as new hLDHA inhibitors. Here, we extended our work synthesizing a large number of derivatives (42–70) by reaction between flavylium salts (27–35) and several nucleophiles (36–41). Nine 2,8-dioxabicyclo[3.3.1]nonane derivatives showed IC50 values lower than 10 µM against hLDHA and better activity than our previously reported compound 2. In order to know the selectivity of the synthesized compounds against hLDHA, their hLDHB inhibitory activities were also measured. In particular, compounds 58, 62a, 65b, and 68a have shown the lowest IC50 values against hLDHA (3.6–12.0 µM) and the highest selectivity rate (>25). Structure–activity relationships have been deduced. Kinetic studies using a Lineweaver–Burk double-reciprocal plot have indicated that both enantiomers of 68a and 68b behave as noncompetitive inhibitors on hLDHA enzyme

    Modified chitosan nanocarriers for delivery of LDHA inhibitors into hepatic cells

    No full text
    Resumen del trabajo presentado al XX National Meeting of the Spanish Society of Medicinal Chemistry, celebrado en Santiago de Compostel del 19 al 22 de junio de 2022.This work was supported by the project RTI2018-098560-B-C22.N
    corecore