110 research outputs found

    Assessing the Emergence of Resistance: The Absence of Biological Cost In Vivo May Compromise Fosfomycin Treatments for P. aeruginosa Infections

    Get PDF
    BACKGROUND: Fosfomycin is a cell wall inhibitor used efficiently to treat uncomplicated urinary tract and gastrointestinal infections. A very convenient feature of fosfomycin, among others, is that although the expected frequency of resistant mutants is high, the biological cost associated with mutation impedes an effective growth rate, and bacteria cannot offset the obstacles posed by host defenses or compete with sensitive bacteria. Due to the current scarcity of new antibiotics, fosfomycin has been proposed as an alternative treatment for other infections caused by a wide variety of bacteria, particularly Pseudomonas aeruginosa. However, whether fosfomycin resistance in P. aeruginosa provides a fitness cost still remains unknown. PRINCIPAL FINDINGS: We herein present experimental evidence to show that fosfomycin resistance cannot only emerge easily during treatment, but that it is also cost-free for P. aeruginosa. We also tested if, as has been reported for other species such as Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis, fosfomycin resistant strains are somewhat compromised in their virulence. As concerns colonization, persistence, lung damage, and lethality, we found no differences between the fosfomycin resistant mutant and its sensitive parental strain. The probability of acquisition in vitro of resistance to the combination of fosfomycin with other antibiotics (tobramycin and imipenem) has also been studied. While the combination of fosfomycin with tobramycin makes improbable the emergence of resistance to both antibiotics when administered together, the combination of fosfomycin plus imipenem does not avoid the appearance of mutants resistant to both antibiotics. CONCLUSIONS: We have reached the conclusion that the use of fosfomycin for P. aeruginosa infections, even in combined therapy, might not be as promising as expected. This study should encourage the scientific community to assess the in vivo cost of resistance for specific antibiotic-bacterial species combinations, and therefore avoid reaching universal conclusions from single model organisms

    Effects of different arachidonic acid supplementation on psychomotor development in very preterm infants; A randomized controlled trial

    Full text link
    Background & aims: Nutritional supplementation with polyunsaturated fatty acids is important in preterm infants neurodevelopment, but it is not known if the omega-6/omega-3 ratio affects this process. This study was designed to determine the effects of a balanced contribution of arachidonic acid in very preterm newborns fed with formula milk. Methods: This was a randomized trial, in which newborns <1500 g and/or <32 weeks gestational age were assigned to one of two groups, based on the milk formula they would receive during the first year of life. Initially, 60 newborns entered the study, but ultimately, group A was composed of 24 newborns, who were given formula milk with an ω-6/ ω-3 ratio of 2/1, and Group B was composed of 21 newborns, given formula milk with an ω-6/ω-3 ratio of 1/1. The infants were followed up for two years: growth, visual-evoked potentials, brainstem auditory-evoked potentials, and plasma fatty acids were periodically measured, and psychomotor development was assessed using the Brunet Lézine scale at 24 months corrected age. A control group, for comparison of Brunet Lézine score, was made up of 25 newborns from the SEN1500 project, who were fed exclusively with breast milk. Results: At 12 months, arachidonic acid values were significantly higher in group A than in group B (6.95 ± 1.55 % vs. 4.55 ± 0.78 %), as were polyunsaturated fatty acids (41.02 ± 2.09 % vs. 38.08 ± 2.32 %) achieved a higher average. Group A achieved a higher average Brunet Lézine score at 24 months than group B (99.9 ± 9 vs. 90.8 ± 11, p =0.028). The Brunet Lézine results from group A were compared with the control group results, with very similar scores registered between the two groups (99.9 ± 9 vs. 100.5 ± 7). There were no significant differences in growth or evoked potentials between the two formula groups. Conclusions: Very preterm infants who received formula with an ω-6/ω-3 ratio of 2/1 had higher blood levels of essential fatty acids during the first year of life, and better psychomotor development, compared with very preterm newborns who consumed formula with an ω-6/ω-3 of 1/1. Therefore, formula milk with an arachidonic acid quantity double that of docosahexaenoic acid should be considered for feeding very preterm infants

    The Impact of Postnatal Systemic Steroids on the Growth of Preterm Infants: A Multicenter Cohort Study

    Get PDF
    Postnatal steroids, often used to prevent and treat bronchopulmonary dysplasia, may influence the growth of preterm infants, although data are scarce in the literature. This is a multicenter cohort study including surviving preterm infants <32 weeks at birth (n = 17,621) from the Spanish Neonatal Network SEN1500 database, without major congenital malformations. Linear regression models were adjusted for postnatal steroids, respiratory severity course (invasive mechanical ventilation at 28 days), progression to moderate-severe bronchopulmonary dysplasia (O2 at 36 weeks), length of stay, sex, gestational age and z-scores at birth. A subgroup analysis depending on the timing of administration, ventilation status at 28 days and moderate-severe BPD diagnosis was also performed. Overall, systemic postnatal steroids were not independently associated with poorer weight gain (0.1; 95% CI: -0.05 to 0.2 g/kg/day), linear growth (0; 95% CI: -0.03 to 0.01 cm/week) or head circumference growth (-0.01; 95% CI: -0.02 to 0 cm/week). Patients who received steroids after 28 days or who were not O2 dependent at 36 weeks after having received steroids gained more weight (0.22; 95% CI: 0.04 to 0.4 and 0.2; 95% CI: 0.004 to 0.5 g/kg/day, respectively). Globally, systemic postnatal steroids had no significant adjusted effect on postnatal growth

    Validation of an IGF1 Screening Method for Retinopathy of Pre-maturity

    Get PDF
    Retinopathy of pre-maturity (ROP) is a retinal disease that causes arrest of vascularization of the retina and can result in retinal detachment and blindness. Current screening protocols may not be sufficiently accurate to identify all at-risk patients. The aim of this study is to validate a method for improved identification of newborns at risk of ROP. We conducted a prospective clinical trial of pre-term newborns <32 weeks of gestation and/or <1,500 g birth weight during a 6-year period in a tertiary care hospital. We applied our new method based on measurement of insulin-like growth factor 1 (IGF1) levels at 3 weeks of age and the presence of sepsis during the first 3 weeks of life. Our screening protocol allowed exclusion of 121 (79.1%) patients for whom American Academy of Pediatrics (AAP) guidelines recommended screening, had a negative predictive value of 100%, and correctly identified all patients with ROP. Following retrospective assessment of our data based on these findings, we propose further restriction of the current AAP indications for screening to <1,100 g and <28 weeks of gestation in order to improve diagnostic efficacy while ensuring optimal use of restriction of human and material resources

    Rapid Phenotype-Driven Gene Sequencing with the NeoSeq Panel: A Diagnostic Tool for Critically Ill Newborns with Suspected Genetic Disease

    Get PDF
    New genomic sequencing techniques have shown considerable promise in the field of neonatology, increasing the diagnostic rate and reducing time to diagnosis. However, several obstacles have hindered the incorporation of this technology into routine clinical practice. We prospectively evaluated the diagnostic rate and diagnostic turnaround time achieved in newborns with suspected genetic diseases using a rapid phenotype-driven gene panel (NeoSeq) containing 1870 genes implicated in congenital malformations and neurological and metabolic disorders of early onset (<2 months of age). Of the 33 newborns recruited, a genomic diagnosis was established for 13 (39.4%) patients (median diagnostic turnaround time, 7.5 days), resulting in clinical management changes in 10 (76.9%) patients. An analysis of 12 previous prospective massive sequencing studies (whole genome (WGS), whole exome (WES), and clinical exome (CES) sequencing) in newborns admitted to neonatal intensive care units (NICUs) with suspected genetic disorders revealed a comparable median diagnostic rate (37.2%), but a higher median diagnostic turnaround time (22.3 days) than that obtained with NeoSeq. Our phenotype-driven gene panel, which is specific for genetic diseases in critically ill newborns is an affordable alternative to WGS and WES that offers comparable diagnostic efficacy, supporting its implementation as a first-tier genetic test in NICUs

    Identification of clinical variants beyond the exome in inborn errors of metabolism

    Full text link
    Inborn errors of metabolism (IEM) constitute a huge group of rare diseases affecting 1 in every 1000 newborns. Next-generation sequencing has transformed the diagnosis of IEM, leading to its proposed use as a second-tier technology for confirming cases detected by clinical/biochemical studies or newborn screening. The diagnosis rate is, however, still not 100%. This paper reports the use of a personalized multi-omics (metabolomic, genomic and transcriptomic) pipeline plus functional genomics to aid in the genetic diagnosis of six unsolved cases, with a clinical and/or biochemical diagnosis of galactosemia, mucopolysaccharidosis type I (MPS I), maple syrup urine disease (MSUD), hyperphenylalaninemia (HPA), citrullinemia, or urea cycle deficiency. Eight novel variants in six genes were identified: six (four of them deep intronic) located in GALE, IDUA, PTS, ASS1 and OTC, all affecting the splicing process, and two located in the promoters of IDUA and PTS, thus affecting these genes’ expression. All the new variants were subjected to functional analysis to verify their pathogenic effects. This work underscores how the combination of different omics technologies and functional analysis can solve elusive cases in clinical practic

    The Escherichia coli SOS Gene dinF Protects against Oxidative Stress and Bile Salts

    Get PDF
    DNA is constantly damaged by physical and chemical factors, including reactive oxygen species (ROS), such as superoxide radical (O2−), hydrogen peroxide (H2O2) and hydroxyl radical (•OH). Specific mechanisms to protect and repair DNA lesions produced by ROS have been developed in living beings. In Escherichia coli the SOS system, an inducible response activated to rescue cells from severe DNA damage, is a network that regulates the expression of more than 40 genes in response to this damage, many of them playing important roles in DNA damage tolerance mechanisms. Although the function of most of these genes has been elucidated, the activity of some others, such as dinF, remains unknown. The DinF deduced polypeptide sequence shows a high homology with membrane proteins of the multidrug and toxic compound extrusion (MATE) family. We describe here that expression of dinF protects against bile salts, probably by decreasing the effects of ROS, which is consistent with the observed decrease in H2O2-killing and protein carbonylation. These results, together with its ability to decrease the level of intracellular ROS, suggests that DinF can detoxify, either direct or indirectly, oxidizing molecules that can damage DNA and proteins from both the bacterial metabolism and the environment. Although the exact mechanism of DinF activity remains to be identified, we describe for the first time a role for dinF

    Influencia del liderazgo en la cultura organizacional y su rendimiento

    Get PDF
    Fil: Couce, Luis Alejandro. Universidad de San Andrés. Escuela de Negocios; Argentina.Palabras clave: Liderazgo, cultura organizacional, competenciasArteche, Mónica R. deHofman, Enriqu

    Side effects of antibiotics on genetic variability

    No full text
    In recent years, there has been accumulating evidence that antibiotics, besides their antimicrobial action, potentially have a number of undesired side effects that can, at least in some cases, promote genetic variability of bacteria. In addition to resistant variants, antibiotics have also been shown to select mutator clones, thus stimulating evolution towards further resistance. Furthermore, mutations, recombination and horizontal gene transfer have been reported to be somehow affected when bacteria are exposed to subinhibitory concentrations of certain antibiotics. These findings may have implications for the use of antibiotics, because they may have undesired side effects, such as enhancing antibiotic resistance evolution. Here we present data supporting (or not) this fearsome possibility and discuss whether this potential threat should be taken into considerationThis work was supported by Grants PI070215 and Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008) from Ministerio de Sanidad y Consumo (MSC), Instituto de Salud Carlos III (ISCIII). A.C. was supported by a fellowship (FI05/00569) from MSC-ISCIII.Peer reviewe
    • …
    corecore