2,459 research outputs found
Impulse-Regime Analysis of Novel Optically-Inspired Phenomena at Microwaves
In this chapter, we present recent advances based on Fourier transformation techniques to
model dispersive UWB phenomena and far-field radiation from complex CRLH structures.
Section 2 first employs inverse Fourier transforms to study pulse propagation along this type of medium. Then, a Fourier transform approach is applied to the current which flows along the CRLH line, accurately retrieving the time-domain far-field radiation of the structure
[which behaves as a leaky-wave antenna, (LWA)]. The main advantages of the proposed
techniques are the easy treatment of complex CRLH structures, a deep insight into the physics of the phenomena, and an accurate and a fast computation, which avoids the time-consuming analysis required by completely numerical simulations.Ecole Polytechnique de Montrea
Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids
Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids The use of chiral amino acids content and stepwise discriminant analysis to classify three types of commercial orange juices (i.e., nectars, orange juices reconstituted from concentrates, and pasteurized orange juices not from concentrates) is presented. Micellar electrokinetic chromatography with laser-induced fluorescence (MEKC-LIF) and b-cyclodextrins are used to determine L-and D-amino acids previously derivatized with fluorescein isothiocyanate (FITC). This chiral MEKC-LIF procedure is easy to implement and provides information about the main amino acids content in orange arginine, D-Arg, and the non-chiral g-amino-n-butyric acid (GABA), i.e., g-aminobutyric acid). From these results, it is clearly demonstrated that some D-amino acids occur naturally in orange juices. Application of stepwise discriminant analysis to 26 standard samples showed that the amino acids L-Arg, L-Asp and GABA were the most important variables to differentiate the three groups of samples. With these three selected amino acids a 100% correct classification of the samples was obtained either by standard or by leave-one-out cross-validation procedures. These classification functions based on the content in L-Arg, L-Asp and GABA were also applied to nine test samples and provided an adequate classification and/or interesting information on these samples. It is concluded that chiral MEKC-LIF analysis of amino acids and stepwise discriminant analysis can be used as a consistent procedure to classify commercial orange juices providing useful information about their quality and processing. To our knowledge, this is the first report about the combined use of chiral capillary electrophoresis and discriminant techniques to classify foods
The blind spots of secularization
According to several international surveys Spain is among the western countries with the most negative views of Jews. While quantitative data on the topic accumulates, there is a significant lack of interpretative approaches that might explain the particular Spanish case. This paper presents the background, methodology and major results of a discussion group-based study on antisemitism, which was conducted in Spain in the autumn of 2009. The study identifies and locates in different socio-economic and ideological milieus the range of stereotypical discourses on Jews, Judaism and the Arab–Israeli conflict in Spain. Analysis of the group meetings shows that, despite growing secularization in Spanish society, the central explanatory variable for persisting and resurging antisemitism in this country is still religion in a broad cultural sense.Peer reviewe
Targeting the Mevalonate Pathway Suppresses VHL-Deficient CC-RCC through an HIF-Dependent Mechanism.
Clear cell renal cell carcinoma (CC-RCC) is a devastating disease with limited therapeutic options available for advanced stages. The objective of this study was to investigate HMG-CoA reductase inhibitors, also known as statins, as potential therapeutics for CC-RCC. Importantly, treatment with statins was found to be synthetically lethal with the loss of the von Hippel-Lindau (VHL) tumor suppressor gene, which occurs in 90% of CC-RCC driving the disease. This effect has been confirmed in three different CC-RCC cell lines with three different lipophilic statins. Inhibition of mevalonate synthesis by statins causes a profound cytostatic effect at nanomolar concentrations and becomes cytotoxic at low micromolar concentrations in VHL-deficient CC-RCC. The synthetic lethal effect can be fully rescued by both mevalonate and geranylgeranylpyrophosphate, but not by squalene, indicating that the effect is due to disruption of small GTPase isoprenylation and not the inhibition of cholesterol synthesis. Inhibition of Rho and Rho kinase (ROCK) signaling contributes to the synthetic lethality effect, and overactivation of hypoxia-inducible factor signaling resulting from VHL loss is required. Finally, statin treatment is able to inhibit both tumor initiation and progression of subcutaneous 786-OT1-based CC-RCC tumors in mice. Thus, statins represent potential therapeutics for the treatment of VHL-deficient CC-RCC. Mol Cancer Ther; 17(8); 1781-92. ©2018 AACR
A low-temperature co-fired ceramic micro-reactor system for high-efficiency on-site hydrogen production
A ceramic-based, meso-scale fuel processor for on-board production of syngas fuel was demonstrated for applications in micro-scale solid-oxide fuel cells (mu-SOFCs). The processor had a total dimension of 12 mm x 40 mm x 2 mm, the gas reforming micro reactor occupying the hot end of a cantilever had outer dimensions of 12 x 18 mm. The device was fabricated through a novel progressive lamination process in low-temperature co-fired ceramic (LTCC) technology. Both, heating function and desired fluidic structures were integrated monolithically into the processor. Using catalytic partial oxidation of a hydrocarbon fuel (propane) as a reaction model, a thermally self-sustaining hydrogen production was achieved. The output flow is sufficiently high to drive an optimized single membrane mu SOFC cell of about the same footprint as the micro reactor. Microsystem design, fabrication, catalyst integration as well as the chemical characterization are discussed in detail. (C) 2014 Elsevier B.V. All rights reserved
Differences in the Ovine HSP90AA1 Gene Expression Rates Caused by Two Linked Polymorphisms at Its Promoter Affect Rams Sperm DNA Fragmentation under Environmental Heat Stress Conditions
Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram’s fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and reproduction performance.Publishe
A nanoparticle bed micro-reactor with high syngas yield for moderate temperature micro-scale SOFC power plants
This work introduces and investigates the a novel compact catalytic nanoparticle bed micro-fabricated reactor suitable for utilization in small-scale intermediate-temperature micro-SOFC systems. It is shown that the presented micro-reactor is able to produce syngas (CO + H2) efficiently from n-butane and propane at temperatures between 550 – 620 °C by means of catalytic partial oxidation (CPOX) using Rh-doped nanoparticles embedded in a foam-like porous ceramic bed as a catalyst. The novel micro-fabricated reactor system is experimentally tested using a carrier specially designed for heating the reactor as well as feeding the fuel and receiving the reaction product gases. Optimization of the syngas production is performed by varying fuel dilutions and reactor temperatures. The performance of the micro-reactor was investigated in two modes: (1) Continuous heating mode, in which two built-in heaters underneath the carrier are kept on throughout the reforming reaction. This simulates the operating state of a micro-SOFC system where the post-combustor provides heat to the micro-reformer continuously. (2) Thermally self-sustained mode, in which the heaters are turned off after the CPOX has been ignited. An estimation of the heat losses of both testing modes is also given. The present micro-reactor is able to achieve syngas yield as high as 60 % for n-butane and 50 % for propane in the continuous heating mode, which is a substantial improvement to state-of-the-art micro-reactors
A novel fuel processing platform for micro-scale solid oxide fuel cells
Recently, the development of micro-scale solid oxide fuel cells (µ-SOFCs) has become a promising research topic in the area of portable energy production. A µ-SOFC system, which can provide 1 to 2 W electrical power under an operating temperature of 550°C 1-2, mainly consists of a fuel processor, an electrochemical power generator, and a post combustor. The role of the fuel processor is to generate a hydrogen-rich product stream that is fed to the power generation module. In previous works, various micromachined fuel reformers based on microelectromechanical system (MEMS) technology have been demonstrated to achieve high-yield syngas generation from liquid hydrocarbons 3-5. However, MEMS-based micro-reformers require time-consuming and expensive fabrication processes, and face critical issues concerning electrical and fluidic interconnects. Conversely, 'traditional' thick film-technology is a simple and low-cost fabrication route, allows integration of a wide palette of materials by a convenient printing technique, and has a proven track record in harsh environments 6. Here, we propose to apply thick-film technology to a fuel-processing platform for the development of µ-SOFC systems. The thick-film based fuel processor consists of a self-sensing heating element, a fluidic carrier comprising a catalyst chamber, and a ceramic substrate. The heating element consists of two independent thick-film platinum conductor meanders, which are screen printed at the bottom of the fluidic carrier, and provide relatively homogeneous heating of the catalytic reforming zone up to 700°C 7. Due to their temperature dependence of resistance, the thick-film Pt heaters double as temperature sensors and thus allow integrated temperature control of the fuel processing. The fluidic carrier was made of two pieces of (12 mm × 75 mm × 0.7 mm) borosilicate glass (Schott AF32), bonded by a screen-printed glass frit seal (Ferro IP760c), which also patterns the fluidic channels in the carrier. Multiple glass paste prints allow for building up the channel height (i.e. distance between glass plates) up to ca. 150 µm. The catalyst is placed into an open chamber on the top plate of the fluidic carrier by dispensing, and is capped by a piece of AF32 glass (12 mm x 13.8 mm) using the same glass frit bonding technique. The elongated shape of the fluidic carrier and low thermal conductivity of the glass efficiently decouples the heat generated in the "hot" catalyst area from the other "cold" end of the carrier, allowing conventional low-temperature electrical and fluidic interconnections. With a heating power below 8 W, the platform is able to quickly heat the active zone to 700°C, while maintaining the electrical and fluidic connections below 50°C. The performance of isobutane reforming was evaluated, studying the impact of design parameters such as the catalyst chamber dimension, and geometry of the thick-film Pt resistor. The talk will present and discuss the studied fabrication processes including the glass frit and catalyst paste formulation, screen printing and dispensing processes, and show the performance of the platform with results obtained on thermal characterization and gas reforming. The heat output of exothermic reactions is well observed. Keywords solid oxide fuel cell, fuel processer, hydrogen production Reference [1] S. Rey-Mermet and Paul Muralt, Solid State Ionics, 179 (2008) 1497 -1500 [2] A. Bieberle-Hütter et al., Journal of Power Source, 177 (2008) 123-130 [3] J. D. Holladay et al., Chemical Reviews, 104(2004) 4767-4789 [4] K. Yoshida et al., Journal of Micromechanical and Microengineering, 16 (2006) S191-S197 [5] A. J. Santi-Alvarez et al., Energy & Environmental Science, 4 (2011) 3041-3050 [6] T. Maeder et al., Proceedings of 7th CICMT, San Diego (USA), 2011 [7] B. Jiang et al., Sensors and Actuators B, 2012, under revie
Dynamic Virtual Network Reconfiguration Over SDN Orchestrated Multitechnology Optical Transport Domains
Network virtualization is an emerging technique that enables multiple tenants to share an underlying physical infrastructure, isolating the traffic running over different virtual infrastructures/tenants. This technique aims to improve network utilization, while reducing the complexities in terms of network management for operators. Applied to this context, software defined networking (SDN) paradigm can ease network configurations by enabling network programmability and automation, which reduces the amount of operations required from both service and infrastructure providers. SDN techniques are decreasing vendor lock-in issues due to specific configuration methods or protocols. Application-based Network Operations (ABNO) is a toolbox of key network functional components with the goal of offering application-driven network management. Service provisioning using ABNO may involve direct configuration of data plane elements or delegate it to several control plane modules. We validate the applicability of ABNO to multi-tenant virtual networks in multi-technology optical domains based on two scenarios, in which multiple control plane instances are orchestrated by the architecture. Congestion Detection and Failure Recovery, are chosen to demonstrate fast recalculation and reconfiguration, while hiding the configurations in the physical layer from the upper layer.Grant numbers : supported by the Spanish Ministry of Economy and Competitiveness through the project FARO (TEC2012-38119)
Transfusion related acute lung injury-TRALI: a review
Acute pulmonary damage caused by transfusion is characterized by the sudden onset of respiratory distress in newly transfused patients within 6 hours after the transfusion, bilateral infiltrative changes in chest X-ray, PaO2/FIO2 <300 mmHg, absence of other risk factors for acute lung injury and absence of signs suggesting cardiogenic origin of pulmonary edema. Being one of the most serious complications of blood transfusion, plasma is the most involved factor, although all blood components can cause it, and is caused by antigen reactions/leukocyte antibody and lipid activity with ability to modify the biological response on primitive leukocytes. The diagnosis is based on the integration of clinical, radiological and gasometric elements, ruling out the rest of the possible causes of acute lung injury. Its differential diagnosis should include hemodynamic overload, anaphylactic reaction, bacterial contamination of transfused blood products and transfusion hemolytic reaction. The treatment is supportive measures based on the needs and does not differ from the treatment of acute lung injury secondary to other etiologies, severe cases require endotracheal intubation and mechanical ventilation while the non-severe can be managed with oxygen therapy
- …