2,579 research outputs found

    Determination of spin polarization in InAs/GaAs self-assembled quantum dots

    Full text link
    The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when B[001]\mathbf{B}\parallel[001] and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field B\mathbf{B} orientation and strength could be determined.Comment: 3 pages, 2 figures, Accepted Appl. Phys. Let

    Lande g-tensor in semiconductor nanostructures

    Get PDF
    Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum dots to magnetic fields oriented in several directions, allowing the mapping of the g-tensor modulus for the s and p shells. We found that the g-tensors for the s and p shells show a very different behavior. The s-state in being more localized allows the probing of the confining potential details by sweeping the magnetic field orientation from the growth direction towards the in-plane direction. As for the p-state, we found that the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. These results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed, in addition to the assessment of the g-tensor, which is of fundamental importance for the implementation of spin related applications.Comment: 4 pages, 4 figure

    Microstrip resonator for microwaves with controllable polarization

    Full text link
    In this work the authors implemented a resonator based upon microstrip cavities that permits the generation of microwaves with arbitrary polarization. Design, simulation, and implementation of the resonators were performed using standard printed circuit boards. The electric field distribution was mapped using a scanning probe cavity perturbation technique. Electron spin resonance using a standard marker was carried out in order to verify the polarization control from linear to circular.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let

    The curvature tensor of almost cosymplectic and almost Kenmotsu (\kappa,\mu,\nu)-spaces

    Get PDF
    We study the Riemann curvature tensor of (\kappa,\mu,\nu)-spaces when they have almost cosymplectic and almost Kenmotsu structures, giving its writing explicitly. This leads to the definition and study of a natural generalisation of the contact metric (\kappa,\mu,\nu)-spaces. We present examples or obstruction results of these spaces in all possible cases

    Polarization-selective excitation of N-V centers in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is promising as an electron spin qubit due to its long-lived coherence and optical addressability. The ground state is a spin triplet with two levels (ms=±1m_s = \pm 1) degenerate at zero magnetic field. Polarization-selective microwave excitation is an attractive method to address the spin transitions independently, since this allows operation down to zero magnetic field. Using a resonator designed to produce circularly polarized microwaves, we have investigated the polarization selection rules of the N-V center. We first apply this technique to N-V ensembles in [100] and [111]-oriented samples. Next, we demonstrate an imaging technique, based on optical polarization dependence, that allows rapid identification of the orientations of many single N-V centers. Finally, we test the microwave polarization selection rules of individual N-V centers of known orientation

    Brillouin optomechanics in nanophotonic structures

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORThe interaction between light and mesoscopic mechanical degrees of freedom has been investigated under various perspectives, from spectroscopy in condensed matter, optical tweezer particle trapping, and long-haul optical fiber communication system penalties to gravitational-wave detector noise. In the context of integrated photonics, two topics with dissimilar origins-cavity optomechanics and guided wave Brillouin scattering-are rooted in the manipulation and control of the energy exchange between trapped light and mechanical modes. In this tutorial, we explore the impact of optical and mechanical subwavelength confinement on the interaction among these waves, coined as Brillouin optomechanics. At this spatial scale, optical and mechanical fields are fully vectorial and the common intuition that more intense fields lead to stronger interaction may fail. Here, we provide a thorough discussion on how the two major physical effects responsible for the Brillouin interaction-photoelastic and moving-boundary effects-interplay to foster exciting possibilities in this field. In order to stimulate beginners into this growing research field, this tutorial is accompanied by all the discussed simulation material based on a widespread commercial finite-element solver.47129FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR08/57857-212/17765-712/17610-313/20180-318/15577-518/15580-6574017/2008-900

    Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator

    Get PDF
    Optomechanical cavities have proven to be an exceptional tool to explore fundamental and technological aspects of the interaction between mechanical and optical waves. Such interactions strongly benefit from cavities with large optomechanical coupling, high mechanical and optical quality factors, and mechanical frequencies larger than the optical mode linewidth, the so called resolved sideband limit. Here we demonstrate a novel optomechanical cavity based on a disk with a radial mechanical bandgap. This design confines light and mechanical waves through distinct physical mechanisms which allows for independent control of the mechanical and optical properties. Our device design is not limited by unique material properties and could be easily adapted to allow large optomechanical coupling and high mechanical quality factors with other promising materials. Finally, our demonstration is based on devices fabricated on a commercial silicon photonics facility, demonstrating that our approach can be easily scalable.Comment: 16 pages, 11 figure

    Resynthesis: Marker-Based Partial Reconstruction of Elite Genotypes in Clonally-Reproducing Plant Species

    Get PDF
    We propose a method for marker-based selection of cultivars of clonally-reproducing plant species which keeps the basic genetic architecture of a top-performing cultivar (usually a partly heterozygous genotype), with the addition of some agronomically relevant differences (such as production time, product appearance or quality), providing added value to the product or cultivation process. The method is based on selecting a) two complementary nearly-inbred lines from successive selfing generations (ideally only F2 and F3) of large size, that may generate individuals with most of their genome identical to the original cultivar but being homozygous for either of the two component haplotypes in the rest, and b) individuals with such characteristics already occurring in the F2. Option a) allows for introgressing genes from other individuals in one or both of these nearly-inbred lines. Peach, a woody-perennial, clonally-reproduced species, was chosen as a model for a proof of concept of the Resynthesis process due to its biological characteristics: self-compatibility, compact and genetically well-known genome, low recombination rates and relatively short intergeneration time (3–4 years). From 416 F2 seedlings from cultivar Sweet Dream (SD), we obtained seven individuals with 76–94% identity with SD, and selected five pairs of complementary lines with average homozygosity of the two parents ≥0.70 such that crossing would produce some individuals highly similar to SD. The application of this scheme to other species with more complex genomes or biological features, including its generalization to F1 hybrids, is discussed.info:eu-repo/semantics/publishedVersio

    PCV114 ABSENTEISM AND IMPAIRED QUALITY OF LIFE IN CHRONIC VENOUS DISEASE IN ROMANIA

    Get PDF
    corecore