Optomechanical cavities have proven to be an exceptional tool to explore
fundamental and technological aspects of the interaction between mechanical and
optical waves. Such interactions strongly benefit from cavities with large
optomechanical coupling, high mechanical and optical quality factors, and
mechanical frequencies larger than the optical mode linewidth, the so called
resolved sideband limit. Here we demonstrate a novel optomechanical cavity
based on a disk with a radial mechanical bandgap. This design confines light
and mechanical waves through distinct physical mechanisms which allows for
independent control of the mechanical and optical properties. Our device design
is not limited by unique material properties and could be easily adapted to
allow large optomechanical coupling and high mechanical quality factors with
other promising materials. Finally, our demonstration is based on devices
fabricated on a commercial silicon photonics facility, demonstrating that our
approach can be easily scalable.Comment: 16 pages, 11 figure