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ABSTRACT
The interaction between light and mesoscopic mechanical degrees of freedom has been investigated under various perspectives, from spec-
troscopy in condensed matter, optical tweezer particle trapping, and long-haul optical fiber communication system penalties to gravitational-
wave detector noise. In the context of integrated photonics, two topics with dissimilar origins—cavity optomechanics and guided wave
Brillouin scattering—are rooted in the manipulation and control of the energy exchange between trapped light and mechanical modes. In
this tutorial, we explore the impact of optical and mechanical subwavelength confinement on the interaction among these waves, coined as
Brillouin optomechanics. At this spatial scale, optical and mechanical fields are fully vectorial and the common intuition that more intense
fields lead to stronger interaction may fail. Here, we provide a thorough discussion on how the two major physical effects responsible for
the Brillouin interaction—photoelastic and moving-boundary effects—interplay to foster exciting possibilities in this field. In order to stim-
ulate beginners into this growing research field, this tutorial is accompanied by all the discussed simulation material based on a widespread
commercial finite-element solver.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5088169., s

I. INTRODUCTION
A. Context and brief history

When the phase of a propagating light field is disturbed by a
spatially periodic modulation, the direction of light propagation is
shifted as determined by momentum conservation.1 If such a spatial
modulation is also periodic in time, the Doppler effect takes place
and energy conservation implies that the scattered light is frequency-
shifted. As initially pictured by Léon Brillouin in his famous trea-
tise La diffraction de la lumière par des ultra-sons,2 mechanical
waves can precisely induce such spatiotemporal gratings leading to
the homonym scattering process: Brillouin scattering (BS). Moti-
vated by Townes’ pioneer experiments in nonlinear light-scattering,

Brillouin scattering gained importance in early experiments on
optical fibers3–5 and planar waveguides.6 The enhanced interaction
length brought by these waveguides fostered the investigation of
Brillouin scattering,6 although it is fair to say that it was within
the optical fiber community that Brillouin scattering had the largest
impact, either as a detrimental or gainful effect.

At high optical intensities, the interference pattern between
the strong pump and the Brillouin back-scattered light—initially
induced by thermal phonons—causes a back-action drive of the
mechanical waves through electrostriction and radiation pressure
forces.7,8 Such feedback leads to the so-called backward Stimu-
lated Brillouin Scattering (SBS) effect. In such a stimulated regime,
Brillouin scattering can ultimately prevent high power signal
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propagation through an optical fiber.9 Despite the wider litera-
ture on the backward Brillouin scattering, a counterpart of it can
also occur in the forward direction, first identified as GAWBS
(Guided Acoustic Wave Brillouin Scattering) by Shelby et al.10 in
optical fibers experiments. The mechanical modes participating in
those initial GAWBS observations were transverse standing waves
with rather low resonant frequencies due to the large optical fiber
cladding diameter (≈125 μm). Despite its weak thermal-noise ori-
gin, the phase noise induced by GAWBS was identified as a major
source of noise in fiber-based quantum noise squeezing experi-
ments.10 These guided mechanical waves can also be stimulated by
light through electrostriction forces and may lead to cross talk11 and
long range interaction12 among short-pulses propagating in optical
fibers.

The fundamentals and applications of SBS derived from these
pioneer experiments impacted various research fields. For instance,
the large and narrow band optical gain available through the Bril-
louin interaction has enabled efficient fiber-optic based slow and
fast light,13,14 nanosecond-long storage of optical pulses,15 opti-
cal and radio-frequency (RF) tunable filters with unprecedented
narrow band, extinction, and tunability.16–19 Other technological
breakthroughs enabled by the recent advances on Brillouin optome-
chanics are the generation of high-spectral purity RF sources,20

distributed strain and temperature sensors,21–25 high resolution
spectrometers,26,27 liquid-compatible sensors,28,29 gyroscopes,30 and
narrow linewidth Brillouin lasers.31–37

For some of us, the love story with Brillouin started back in
2003 when selecting small-core photonic crystal fiber (PCF) sam-
ples for fiber-optical parametric amplification experiments at Bath
University (UK). In the following years, in a joint effort between
University of Campinas, FEMTO-ST in Besançon, and the Max
Planck Research Group at Erlangen (now the Max Planck Institute
for the Science of Light), we verified that the famous formula by
Smith38—used for predicting the onset of SBS—consistently over-
estimated it for small-core PCFs.39 Further investigation revealed
that the strong optical and mechanical confinement in these fibers
was responsible for the nonintuitive reduced overlap between optical
and mechanical modes and, therefore, the overshoot of Smith’s for-
mula. At the time, similar predictions were made by Kobyakov and
collaborators in weakly guiding optical fibers designed to suppress
SBS.40 PCFs not only triggered the possibility of controlling back-
ward Brillouin scattering but also enabled the first observation of
forward Brillouin scattering at gigahertz frequencies;41 the mechan-
ical waves were trapped at the 1.2 μm glass-air core interface, which
drastically increased the GAWBS frequency and led to a broader
wavevector range with near-zero mechanical group velocity, a prop-
erty shared by the optical phonon branch in solids and inspired
referring to GAWBS as Raman-like scattering.41 Further work car-
ried out by several groups using optical fibers42–49 unraveled many
remaining mysteries and potential applications of guided Brillouin
scattering.

Parallel to these developments, the role of optical forces in
photonic integrated cavities and waveguides was going through a
revolution after a series of papers demonstrating the strong optome-
chanical interaction enabled by radiation pressure forces in high-
index contrast devices.50–58 In the last ten years, following the
growth and availability of advanced top-down nanofabrication tools,
a series of research breakthroughs occurred in this field within the

classical59–61 and quantum realm.62–67 The advancement of these
integrated photonic structures also impacted backward Brillouin
scattering, especially after the landmark demonstration of on-chip
SBS by Pant et al.,68 which sparked a convergence of the traditional
waveguide-based Brillouin concepts with the cavity optomechan-
ics ones. One clear outcome of this convergence was the prediction
and subsequent demonstration of giant gain Brillouin scattering in a
CMOS-compatible platform,69–71 which culminated in the first gen-
eration of on-chip Brillouin lasers20,35,36,72 and on-chip signal pro-
cessing devices.72,73 In the context of these recent demonstrations,
it is harder to draw a line dividing the fields of Brillouin scattering
in wave-guiding photonic structures and the field of cavity optome-
chanics. In light of this convergence, in this tutorial, we will use the
term Brillouin optomechanics to encompass the whole spectra of
experiments involving trapped light and mechanical waves.

B. Scope of this tutorial
There have been a series of reviews and tutorials pub-

lished about the individual topics of Brillouin scattering and
optomechanics in the recent years, with focus on optical fibers,81

experimental progress,82 integrated photonic applications,83,84

phononics,85 historical evolution,86 surface modes,87 electrostriction
excitation,88 and cavity optomechanics.89 More recently, an exten-
sive and detailed review article on current developments and future
perspectives of light and sound interaction has been published by
Safavi-Naeini et al.,90 which brings together several aspects of elec-
tromechanical devices that share many similarities with optome-
chanical systems.91–95 In this tutorial, we offer a complementary
perspective aimed at providing a thorough discussion of the inter-
action between optical and mechanical modes in both waveguides
and cavities as described by the coupled-mode theory. Since there is
an extensive literature covering the derivations of the coupled-mode
equations for both waveguides79,96,97 and cavities,79,98 and the funda-
mental90 and technological84 outcomes of this interaction, our focus
will be on discussing the interplay between the two major mech-
anisms responsible for the Brillouin and optomechanical effects:
the refractive index perturbations through the photoelastic effect99

(PE) induced by the elastic strain and moving boundary (MB) effect
caused by the mechanical mode distortion of the optical bound-
aries,100 paying particular attention to highly confined optical and
mechanical modes in nanophotonic structures. Doing so, we also
cover the two major optical forces that enable driving mechan-
ical modes with light, the electrostriction and radiation pressure
forces, which are directly connected to the PE and MB refractive
index perturbations.96 To give an overview of the tutorial’s scope, we
show in Fig. 1 several structures where forward and backward Bril-
louin optomechanics have already been demonstrated, divided into
fiber-based and integrated waveguides and axisymmetric cavities.

We organized this tutorial as follows: in Sec. II, we discuss
the role of optical dispersion relation and momentum conservation
(phase-matching) in both cavities and waveguides; general proper-
ties of the Brillouin optomechanical interaction are also discussed,
including coupled-mode equations, definition of coupling rate and
gain coefficient, and the structure of boundary and volume optome-
chanical overlap integrals. In Sec. III, we explore in detail Bril-
louin scattering in circular dielectric waveguides —specifically a sil-
ica glass rod suspended in air. In Sec. IV, we review in detail the
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FIG. 1. Optical waveguide and cavity structures that have been commonly used to demonstrate Brillouin optomechanics based photonic devices. (a) Silica taper fiber,74,75

(b) integrated As2S3 waveguide buried on SiO2,68 (c) simple Si disk,76 (d) silica photonic crystal fiber,39 (e) suspended silicon waveguide,71 (f) toroidal silica cavity,77

(g) dual-nanoweb silica fiber,47 (h) suspended silicon waveguide membrane,35 and (i) silicon bullseye optomechanical cavity.78 For the typical dimensions, (a)–(f) present
examples of mechanical modes for backward scattering, while (g)–(i) present examples of mechanical modes for forward scattering. In each panel, the top right inset shows
the normalized total mechanical displacement (|u|) and the bottom right inset shows the normalized absolute value of the electric field (|E|). In order to compare the coupling
strength between the optical and mechanical modes for each device, we extract g0 [see Eq. (11)] from the simulations of the cavities and follow Ref. 79 to calculate g̃0
[see Eq. (12)] using the same length for all circular cavities, equivalent to their perimeter (Lwg = 2π × 10 μm). The same approach is used to evaluate the gain coefficient
(GB/Qm). The resulting mechanical frequency (Ω/2π), effective coupling rate (g0/2π), and the ratio between the gain and mechanical quality factors (GB/Qm) are (a) 6.0 GHz,
8.15 kHz, and 2.1× 10−3 (W m)−1; (b) 7.67 GHz, 110 kHz, and 1.3 (W m)−1; (c) 16.7 GHz, 8.5 kHz, and 1.5× 10−2 (W m)−1; (d) 5.9 GHz, 0.65 kHz, and 2.2× 10−5 (W m)−1;
(e) backward (left): 14.7 GHz, 17.5 kHz, and 5.3 × 10−2 (W m)−1, forward (right): 9.2 GHz, 185 kHz, and 9.5 (W m)−1; (f) 10.3 GHz, 8.4 kHz, and 2.1 × 10−3 (W m)−1;
(g) 6.5 MHz, 12.1 kHz, and 6.4 (W m)−1; (h) 6.1 GHz, 20.0 kHz, and 1.2 × 10−1 (W m)−1; and (i) 8.8 GHz, 149 kHz, and 5.7 (W m)−1. In (e), forward and backward cases
are presented as well as an example on the use of mechanical anisotropy for calculating modes and couplings in this geometry. A simulation file for each one of these devices
is hosted on the data repository.80

optomechanical interaction in axisymmetric dielectric cavities,
where the example of a silicon microdisk is explored and contrasted
with other devices. Finally, general remarks and perspectives are
outlined in the conclusions.

In order to fulfill the purpose of this tutorial, we also cre-
ated an accompanying data repository80 that includes most of the
simulation files and processing scripts used in each of the figures.
With the exception of some analytical tools, all the simulations were
performed using the commercial finite-element solver COMSOL
Multiphysics.

II. BASICS: DISPERSION RELATION, PHASE
MATCHING, AND COUPLING
A. Dispersion relation and phase-matching

When optical and mechanical waves are localized inside a mate-
rial, they can couple to each other and exchange energy through
inelastic light-scattering. This is a two-way process, where either
energy is transferred from the mechanical to the optical waves or
the other way around. The inelastic scattering is due to the time-
dependent refractive index grating induced by the mechanical wave.
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In waveguides and cavities, mechanical and optical fields propa-
gate in the eigenmodes of the structure obeying specific dispersion
relations. If a pump laser at frequency ωp is launched in an opti-
cal mode with the wavevector βp, it propagates along the wave-
guide (z-direction) with a phase given by exp(−iβpz + iωpt) and may
be scattered by a mechanical mode with frequency and wavevector
(Ω, βm) into a distinct optical mode (ωs, βs), provided the following
energy and momentum relations are fulfilled:

ωs = ωp ±Ω, (1a)

βs(ωs) = βp(ωp) ± βm(Ω). (1b)

The ± signs in these relations are due to Doppler effect and indi-
cate that the scattered light may be blue-shifted (+ sign, anti-Stokes)
or red-shifted (− sign, Stokes) from the pump; the wavenumbers
βp,s,m can be positive- or negative-valued depending on the propa-
gation direction. We illustrate such phase-matching conditions in
Figs. 2(a) and 2(b). For example, in backward Brillouin scatter-
ing [βs(ωs) = −|βs(ωs)|], the phase-matched mechanical wavevec-
tor predicted by Eq. (1b) for the Stokes wave is βm(Ω) = βp(ωp)
− βs(ωp − Ω) = |βp(ωp)| + |βs(ωp − Ω)|, which corresponds to a
short-wavelength forward propagating (βm > 0) mechanical mode,
as shown in Fig. 2(a). In the case of forward Stokes scattering,
the phase-matched mechanical mode is a long-wavelength forward
propagating one. Therefore, in order to infer the phase-matched βm,
one needs to decide not only in which direction (forward or back-
ward) the scattered light is being investigated but also whether the
pump and scattered waves belong to the same transverse optical
mode. Before we discuss some general aspects of the phase-matching
in confined photonic structures, we explore how Brillouin scat-
tering in axisymmetric optical cavities share similarities with their
waveguide counterparts.

Within an axisymmetric optical cavity, the propagation phases
for both optical and mechanical modes are in the form exp(−imϕ
+ iωt), where m is an integer and ϕ is the azimuthal angle. This phase
dependence leads to a modified form of momentum conservation,

ms(ωs) = mp(ωp) ±M(Ω), (2)

where m(ω) and M(Ω) represent the optical and mechanical disper-
sion relations for the cavity, respectively. Equation (2) is analogous
to Eq. (1b), but the dispersion relation β(ω) is now attached to the
azimuthal number frequency dependence m(ω); the azimuthal num-
bers mp,s, M can also be positive-valued or negative-valued depend-
ing on the propagation direction, clockwise or counterclockwise. In
addition, since the cavity resonance condition requires the azimuthal
numbers m and M to be integers, the phase-matching points are
discrete. An explicit connection between Eqs. (2) and (1b) can be
drawn by mapping the propagation phase along the z-direction with
the azimuthal coordinate, z → Rϕ, where R is the cavity radius; this
implies that exp(−iβRϕ)→ exp(−imϕ) and, therefore, β = m/R. This
relation is quite useful and predicts the approximate values of the
azimuthal numbers for an optical cavity mode with a given effective
refractive index (neff) as m ≈ k0neffR, where k0 = 2π/λ is the vacuum
wavenumber at an optical wavelength λ.

In Fig. 2(c), we illustrate the most common forward and back-
ward Brillouin scattering configurations studied in photonic struc-
tures, restricted to the Stokes scattering for simplicity. We generalize

FIG. 2. Phase-matching in waveguide and axisymmetric cavity Brillouin scattering.
Phase-matching schematic for (a) backward and (b) forward Brillouin scattering,
where the black curved arrows represent the pump wave, and the curved red
(blue) ones represent the Stokes (anti-Stokes) wave. (c) Optical dispersion dia-
gram showing only the possible phase-matched Brillouin Stokes interactions. The
solid curves represent dispersion branches for different optical modes, and the cir-
cles sampling the solid curves represent longitudinal resonances that are formed if
the waveguide was wrapped into a cavity geometry; the shaded horizontal regions
represent the linewidth of each optical mode resonance (κ). The arrows in the
lower (upper) region correspond to the intramode (intermode) scattering. For the
intramode set, an optical pump at (ωp, βp) is scattered to the same dispersion
branch in the FW (BW) direction by forward propagating mechanical modes rep-
resented by the red arrow (green arrow). For the intermode set, an optical pump
at (ωp, βp) is scattered to another dispersion branch in the FW (BW) direction
by forward propagating mechanical modes represented by the red (green) dotted-
dashed arrow. (d) Cavity resonance schematic representing the photonic density
of states (PDOS) of the cavity modes. Notice that in the intramode FW case, the
Stokes is detuned from the cavity mode (open symbol) effectively reducing the
Stokes photons at the cavity mode.

this dispersion diagram schematic to represent the optical disper-
sion relation of both waveguides (solid lines) and cavities (discrete
dots). We now distinguish between two scattering configurations:
(1) intramodal and (2) intermodal scattering.

1. Intramodal scattering
In intramodal scattering, both pump and the scattered light

propagate in the same transverse mode, in either of two directions,
and therefore fall in the same dispersion relation branch; as illus-
trated in the lower part of Fig. 2(c). The backward case is the most
common form of Brillouin scattering and can be easily observed
in optical fibers.3,5 In this configuration, the forward propagating
pump at mode (ωp, βp) is back-scattered to (ωBW

s ,βBW
s ). Assuming
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bidirectional101 cavities or waveguides, i.e., βs(ω) = −βp(ω) or ms(ω)
= −mp(ω), the phase-matching conditions [Eqs. (1b) and (2)] imply
that

βintra,BW
m = ∓[βp(ωp) + βs(ωp ±Ω)] ≈ ∓2βp(ωp), (3a)

Mintra,BW = ∓[mp(ωp) + ms(ωp ±Ω)] ≈ ∓2mp(ωp), (3b)

where we approximated βs(ωp ± Ω) ≈ βs(ωp) since the mechani-
cal wave frequency is orders of magnitude lower than the optical
frequency. This backward intramode process is represented by the
solid green arrow in the lower part of Fig. 2(c). Albeit the wave-
guide phase-matching (β) can always be fulfilled, the cavity case
(M) is far more restrictive: the frequency difference between the
pump and scattered modes must match the mechanical frequency
within the linewidth of the optical modes. In Fig. 3(a), we illus-
trate the mechanical dispersion relation of a waveguide (Ω, βm) or
axisymmetric cavity (Ω, M/R)—the straight line represents the bulk-
wave dispersion relation, and the hyperbolic curve with nonzero
cutoff frequency represents the confined mechanical mode. The
phase-matching condition for backward scattering given in Eq. (3)
is represented by a dashed-gray line identified as BW. In either
the waveguide or cavity geometry, the mechanical mode is a short-
wavelength mode (large βm), as indicated in Fig. 3(b). The symmetry
of Eq. (3) with respect to Stokes and anti-Stokes scattering suggest
that both are equally phase-matched, giving rise to two scattering
peaks symmetrically positioned around the central pump frequency.

For intramodal backward scattering, a reasonably good esti-
mate of the phase-matched mechanical frequency can be obtained by
assuming a linear dispersion relation for both optical and mechani-
cal modes, βp = k0neff and βm = Ω/V l, with V l being the longitudinal
speed of sound. Inserting into Eq. (3), we obtain Ω ≈ (4π/λ)neffV l.
For a pump at λ = 1550 nm and a silica glass waveguide (neff
= 1.45 and V l = 5968 m/s), the phase-matched frequency is predicted
to be Ω/2π = 11.16 GHz, which agrees pretty well with the experi-
ments in pure-silica core fibers.41 Similar predictions76 can be made
for axisymmetric optical cavities by employing the approximation
mp ≈ βpR. Tight confinement structures have multiple mechani-
cal modes with dispersion relations that substantially deviate from

the linear dispersion relation of bulk longitudinal waves and, as a
result, exhibit multiple phase-matching frequencies that differ from
the above estimate. Further in this tutorial, several examples are
explored to illustrate this point.

The case of forward intramodal scattering represents the usual
interaction observed in the forward Brillouin scattering experi-
ments10,41,102 and many of the cavity optomechanics ones.51,53,56 In
this configuration, the forward propagating pump at mode (ωp,
βp) is forward-scattered to (ωFW

s ,βFW
s ) and the phase-matching

conditions [Eqs. (1b) and (2)] result in

βintra,FW
m = ∓[βp(ωp) − βs(ωp ±Ω)] ≈ 0, (4a)

Mintra,FW = ∓[mp(ωp) −ms(ωp ±Ω)] ≈ 0. (4b)

The phase-matching condition for forward intramodal scat-
tering is represented in Fig. 3(a) as a vertical dashed line identi-
fied with FW. Notice that in the limit of (βm, M) ≈ 0, forward
intramodal scattering involves a mechanical mode at the cut-off fre-
quency (i.e., at the waveguide transverse mechanical resonances). In
either waveguide or cavity structures, these transverse resonances
correspond to a uniform spatial phase along the propagation direc-
tion (z for waveguides or ϕ for axisymmetric cavities), as illustrated
in Fig. 3(c). From the mechanical dispersion relation of Fig. 3(a),
we note that the forward scattering phase-matching intercepts the
mechanical modes very close to their cut-off frequencies. In con-
trast to the bulk mechanical dispersion [the straight solid line in
Fig. 3(a)], these transverse resonances dispersion curves flatten out
in the limit of null wavevector, resulting in very large mechanical
phase velocities Ω/βm. Such near-cutoff dispersion relation charac-
teristics render forward intramodal Brillouin scattering analogous to
Raman scattering in solids due to the flattened-out dispersion of the
optical phonon branch.41 Rigorously, the mechanical wavevector is
not exactly null and can be estimated by exploring the fact that both
scattered and pump waves have nearly the same frequency. Tay-
lor expansion of the scattered optical wavevector around the pump
frequency, i.e., βs ≈ βp + (ωs − ωp)∂β/∂ω, results in βm ≈ ±Ω/υg
(υg is the group velocity of the optical dispersion branch), which

FIG. 3. (a) Schematic of the mechanical dispersion relation; the straight line represents the bulk-wave dispersion relation, and the hyperbolic curve with nonzero cutoff
frequency represents the confined mechanical mode dispersion relation. Illustration of mechanical modes phase-matched for (b) backward and (c) forward Brillouin scattering
in waveguides (top) and axisymmetric cavities (bottom). The colormaps in (b) and (c) represent the electric field, and blue (red) color represents the negative (positive) values;
λ (Λ) is the optical (mechanical) wavelength. In (b), the curved boundary represents the short-wavelength mechanical wave, while in (c), the cavity expands radially with no
azimuthal distortion.
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compared to the pump wavevector is βm/βp ≈ Ω/ωp ≈ 10−5 (for
ng = c/υg ≈ neff). One can see that the Stokes and anti-Stokes scat-
tered waves interact with very long wavelength mechanical modes
(λm ≈ 20 cm for a 1 GHz mode). Since either the mechanical attenu-
ation length is shorter than such a wavelength or than the waveguide
itself, the optical waves essentially interact with the same mechanical
mode. For cavities, the existence of a finite lifetime (1/κ) allows for
the pump and scattered light to couple to the same optical mode,
although the number of intracavity photons will depend on the
cavity photonics density of states (PDOS) at a given detuning [see
Eq. (10)].89

2. Intermodal scattering
In intermodal scattering, the scattered light couples to a trans-

verse optical mode distinct from the pump-wave mode, either in
the forward or backward direction. In the backward configuration,
represented by the dashed-dotted green arrow in the upper part of
Fig. 2(c), the phase-matching conditions [Eq. (1b) and (2)] imply
that

βinter,BW
m = ∓[βp(ωp) + βs(ωp ±Ω)], (5a)

Minter,BW = ∓[mp(ωp) + ms(ωp ±Ω)]. (5b)

On the other hand, the forward intermodal scattering, repre-
sented by the dashed-dotted red arrow in Fig. 2(c), contrasts with
the forward intramodal case as the mechanical wavevector may be
considerably larger, as given by the phase-matching condition,

βinter,FW
m = ∓[βs(ωp ±Ω) − βp(ωp)], (6a)

Minter,FW = ∓[ms(ωp ±Ω) −mp(ωp)]. (6b)

Note that the intermode phase-matching given by Eqs. (5) and (6)
may also be applied between distinct nondegenerate polarizations
of an given mode family, such as in between polarizations of fun-
damental modes in PCFs.103 The mechanical wavevector imposed
by the phase-matching is an important aspect of the mechanical
mode engineering, and it is crucial in determining the mechani-
cal group velocity and the attenuation length for a mode with a
given dispersion relation βm(Ω); it may also define whether mechan-
ical bandgap guidance is feasible.104 Therefore, although we cannot
make any further assumption about the relation between βs and
βp in Eqs. (5) and (6), it is instructive to analyze and compare
the limiting cases of BW and FW scattering on a dielectric waveg-
uide based on the optical total internal reflection. In this case, the
guided optical wavevector is limited to the range βclad < β < βcore,
where βclad = k0nclad (βcore = k0ncore) is the cladding (core) mate-
rial wavenumber; nj is their respective refractive indices. For BW
intermodal scattering, the shortest wavevector mismatch is given by
βinter,BW

m ≈ ∓(βcore + βclad). In a low contrast silica-on-air structure,
such an intermodal wavevector differs slightly from the intramodal
case [Eq. (3)], (βinter,BW

m /βintra,BW
m )SiO2 ≈ (1.45 + 1)/(2× 1.45) ≈ 0.85.

However, in higher index-contrast waveguides such as silicon-on-air
structures, intermodal scattering may offer a larger range of possible
mechanical wavevectors, (βinter,BW

m /βintra,BW
m )Si ≈ 0.65. Despite such

possibility of probing a larger portion of the mechanical dispersion
relation, BW intermodal scattering has not been deeply investigated
in waveguide Brillouin experiments. Nevertheless, such a possibil-
ity of phase-matching to different transverse modes was a key fac-
tor enabling the first observation of Brillouin scattering in silica

microsphere cavities.105 For comparison, the largest wavevector mis-
match for FW intermodal scattering can be estimated as βinter,FW

m
≈ ∓(βcore − βclad). In a silicon-on-air structure, it could result in a
larger forward intermodal wavevector, (βinter,FW

m /βinter,BW
m ) = (3.45

− 1)/(3.45 + 1) = 0.55. In practice, this ratio will be smaller due
to modal guidance constraints, but it shows that intermodal for-
ward scattering can also involve short-wavelength (large wavevec-
tor) propagating mechanical modes. At such large wavevectors,
the mechanical wave bounces from the guiding structure bound-
aries at an angle, which may drastically change the mode behav-
ior; for instance, mechanical total internal reflection and phononic
bandgaps may be completely modified at blazing incidence.

As a historical note of forward intermodal scattering, it was
first reported by Engan et al. in a two-mode optical fiber with
the mechanical wave driven by a piezoactuator,106 and a couple
of years later, it was observed as stimulated scattering by Russell
et al.107 Recently, it has been the configuration of choice in important
Brillouin experiments in microphotonic structures.35,108,109 Within
optical microcavities, such short-wavelength mechanical modes can
also be explored to ensure that the scattered light is resonant with
one of the cavity modes, a technique that has been used35,72,108 to
demonstrate Brillouin lasing in integrated photonic cavities.

B. Photoelasticity and moving boundary
perturbations: Electrostriction and radiation
pressure forces

Although the phase-matching conditions discussed so far are
necessary to ensure efficient optomechanical energy transfer, they
are not sufficient. The optical and mechanical modes must have
a reasonable spatial overlap and effectively perceive each other
through some underlying physical effect. In the PE effect, the dielec-
tric permittivity is disturbed by the elastic strain,1,8 while in the
MB, geometrical distortions of the optical boundary induced by
the mechanical wave perturb the guided mode effective refractive
index.100 The latter was first noticed as a secondary contribution in
thin-film scattering experiments6 but has been demonstrated to be
critical in subwavelength scale photonic structures.62,69,74,88,96 These
two effects together are responsible for light scattering by mechani-
cal waves in the various configurations described in Sec. II A. It is
worth noting that although photoelasticity and moving boundary
perturbation are the main forward effects responsible for the Bril-
louin optomechanical interaction considered here, other coupling
mechanisms exist, such as thermomechanical8 and magnetoelas-
tic110 coupling.

Within optical waveguides, the Brillouin optomechanical inter-
action is described through the spatiotemporal evolution of slowly
varying optical and mechanical field amplitudes along the propaga-
tion direction, while in optical cavities, the time evolution of the
slowly varying fields describes the interaction. One may follow a
few distinct approaches to derive such coupled equations. A classi-
cal one starts from Maxwell’s and elastodynamics wave equations
with a forward effect, describing how optical fields are perturbed
by the mechanical waves (such as photoelastic and moving bound-
ary effects), and a backward effect representing the electromagnetic
forces driving the mechanical modes (such as electrostriction and
radiation pressure). This path has been explored for both waveg-
uides96,111 and cavities.64 Another common approach to derive the
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coupled-mode equations, which only relies on energy conservation,
starts directly from the classical or quantum mechanical Hamilto-
nian for waveguides71,90,112–116 or cavities89,90,117 where the photoe-
lastic and moving boundary effects are directly incorporated in the
Hamiltonian. The cavity and waveguide descriptions may also be
directly linked to each other by employing a mean-field approach
that averages out the cavity field dependence along the round-trip
path—similar to the derivation of the Lugiatto-Lefever equation for
optical frequency combs.79,118,119

Regardless of choosing the force density approach or the
energy-based (Hamiltonian) one, the derived coupled mode equa-
tions and their describing physics should be the same. This will be
the case provided that the corresponding forward and backward
effects have been properly accounted for in the Hamiltonian. It is fair
to say that up to date Brillouin optomechanics experiments are quite
accurately described by the electrostrictive and moving boundary
effects, and these terms can be derived by exploring only coupled-
mode theory and thermodynamics arguments96—thus showing that
forward and backward effects are directly related to each other in
the absence of optical and mechanical dissipation. In other words,
photoelasticity is directly related to electrostriction, while moving
boundary effect is directly related to radiation pressure. In fact, we
discuss later in this tutorial that the overlap integrals describing the
forward effects are identical to the those describing the backward
effects.96

1. Waveguides
Since we aim at a unified discussion of the waveguide and cav-

ity Brillouin optomechanics, we chose to write the coupled mode
equations in the form derived in Refs. 90, 113, 114, and 116 for
the Stokes wave-interaction. Note that the anti-Stokes also plays an
important role in waveguides, especially in the forward intramodal
scattering where the almost null wavevectors lead a strong symme-
try between the two scattered waves.114 Nevertheless, considering
only the Stokes wave suffices our purpose of discussing the funda-
mentals of the Brillouin optomechanical coupling. Assuming slowly
varying envelopes for the pump (ãp), Stokes (ãs), and mechanical
waves (b̃) (see Appendix A), the following coupled equations are
obtained:

(υp∂z + ∂t + υpαp/2)ãp = −ig̃0ãsb̃, (7a)

(±υs∂z + ∂t + υsαs/2)ãs = −ig̃∗0 b̃∗ãp, (7b)

[υm∂z + ∂t + (iΔm + γm/2)]b̃ = −ig̃∗0 ã∗s ãp, (7c)

where υp ,s ,m represent the moduli of pump, Stokes, and mechani-
cal group velocities, the upper and lower signs in the ± symbols in
Eq. (7b) account explicitly for either copropogating (upper sign) or
counterpropagating (lower sign) optical modes,120 αp ,s ([m−1]) are
the optical power attenuation coefficient, Δm = Ω − Ωm is the fre-
quency mismatch between the pump-Stokes beating (Ω = ωp − ωs),
ωp ,s represent the pump and Stokes optical frequencies, γm = Ωm/Qm
is the mechanical energy damping rate of a mode with quality fac-
tor Qm, and g̃0 is the waveguide optomechanical coupling constant.
Note that the slowly varying amplitudes in Eq. (7) are normalized
such that they represent photons or phonons per unit length of the
waveguide116 [|aj|2], [|b|2] = m−1, and the coupling constant has SI
units of [g̃0] = (rad/s)

√
m.

The important aspects of the Brillouin interaction follow from
Eq. (7).79,97 The mechanical wave envelope is driven by the beat-
ing between the pump and Stokes envelopes, which are slowly
varying functions of z under typical values of power and cou-
pling strength.96,116 In steady-state (∂t → 0) and for a small υm/γm
ratio (large mechanical damping), a common experimental con-
dition,71,103 the mechanical wave adiabatically follows the optical
drive, b̃ = −ig̃∗0 ã∗s ãp/(iΔ + γm/2). Coupled equations involving
only the optical waves can be derived revealing the power-exchange
(Pp ,s = h̵ωp ,sυp ,s|ap ,s|2) along the waveguide length,79,90,96,116,120

∂zPp = −GBPpPs − αpPp, (8a)

∂zPs = ±GBPpPs ∓ αsPs, (8b)

where we introduced the Brillouin gain coefficient GB
= 4∣g̃0∣2L(Ω)/(υsυpγmh̵ω), with ω = ωp ≈ ωs and L(Ω) = (γm/2)2/
[(γm/2)2 + (Ω − Ωm)2] being the Lorentzian gain profile for a
mechanical mode. The gain Lorentzian expresses the role of phase-
matching in the Brillouin interaction; if the pump and Stokes fre-
quency are offset from the mechanical mode by more than one
mechanical linewidth (γm), the Brillouin gain is largely suppressed.
In the undepleted pump approximation (∂zPp ≈ 0), Eq. (8) ensures
that the Stokes optical power grows exponentially with a power gain
coefficient GBPp per unit length, leading to GBPp/αs > 1 as the net
Brillouin Stokes gain condition. The power exchange interaction
described by Eq. (8) is an important property explored in Brillouin
amplifiers, filters, and lasers,121 and other interesting regimes of Bril-
louin scattering can also be derived from Eq. (7) and have been
discussed in detail elsewhere.84,90,114,116,122–124

The discussion above shows that within waveguides, the Bril-
louin gain coefficient GB is often more relevant than the fundamental
optomechanical coupling constant g̃0. Thus, GB will be our metric of
choice when comparing different waveguides throughout this tuto-
rial. The relation between GB and the optical and mechanical mode
fields can be expressed as96,125

GB(Ω) = Qm
2ωpL(Ω)

m̄effΩ2
m
∣∫ f wg

mbdl + ∫ f wg
pe dA∣

2
, (9)

where Qm is the mechanical energy quality factor, m̄eff = ∫ ρ∣um∣2/
max ∣um∣2dA is the effective linear mass density of a mechanical
mode with displacement profile um, ρ is the mass density, and f wg

mb
and f wg

pe are the line and area overlap integrals representing the MB
and PE effects, respectively. We discuss their properties after intro-
ducing the optical cavity figure-of-merit expressions. It is important
to note that the choice of optical and mechanical mode normaliza-
tion in the coupled mode-theory affects the expression for the gain,
and in Appendix A, we discuss our choices leading to Eq. (9).

2. Cavities
In order to keep the cavity discussion and notation as close as

possible to waveguides, we write the cavity coupled mode equations
for the slowly varying envelopes for the pump (ap), Stokes (as), and
mechanical waves (b) as79,90

(∂t + (iΔp + κp/2))ap = −ig0asb +
√κepsp, (10a)

(∂t + (iΔs + κs/2))as = −ig∗0 b∗ap +
√
κesss, (10b)

[∂t + (iΔm + γm/2)]b = −ig∗0 a∗s ap, (10c)

APL Photon. 4, 071101 (2019); doi: 10.1063/1.5088169 4, 071101-7

© Author(s) 2019

https://scitation.org/journal/app


APL Photonics TUTORIAL scitation.org/journal/app

where κp ,s are the pump and Stokes optical energy damping rates,
Δp ,s = ωp ,s − ωcp ,cs are the frequency detunings between the driving
fields (ωp ,s) and the cavity modes (ωcp ,cs); the optomechanical cou-
pling rate is g0. The driving field amplitudes are represented by sp ,s
and coupled to the cavities at a rate κep ,es. In writing Eq. (10), we
ignored the weak thermal-noise drive for the mechanical modes.116

The normalization for the optical and mechanical slowly varying
amplitudes in Eq. (10) are such that they represent the average num-
ber of photons or phonons stored in the cavity,79 and the coupling
constant has SI units of [g0] = (rad/s).

A plethora of Brillouin optomechanical effects are predicted
by Eq. (10),90 among which lasing is one important exam-
ple. In this case, it is important to distinguish between opti-
cal and mechanical lasing, both of which have been exper-
imentally observed.33,34,36,72,77,105,126–128 In the mechanical lasing
regime,51,56,127,129 the mechanical mode has a lower dissipation
rate (Γm ≪ κs) and experiences the Schawlow-Townes line-
narrowing often associated with lasing behavior,130,131 whereas
in the optical lasing regime,34,36,72,77,105,126 which is often asso-
ciated with the label Brillouin laser due to historical hierarchy,
the Stokes mode dissipation is the smallest (κs ≪ Γm) and the
linewidth-narrowing is experienced by the Stokes field.32 One way
to see why such dissipation hierarchy defines the lasing field
(Stokes or mechanical) is by inspecting Eq. (10) in the undepleted
pump approximation: the field experiencing the largest dissipation
responds quickly to the interaction terms [proportional to g0 in
right-hand side of Eq. (10)] and can be adiabatically eliminated
(∂t ≈ 0). Such adiabatic elimination leaves only one dynami-
cal variable, which is the slowly responding (small dissipation)
field, and the lasing threshold occurs when a Hopf bifurcation
of the slow field occurs.132,133 When only a single optical mode
is involved, a common situation in many cavity optomechanics
experiments,89 the back-action to the mechanical mode is driven
by the sidebands of the pump wave.89 Two important effects
in this single-mode regime are the optical spring,57,134 amplifica-
tion51,135 and cooling,62,136,137 which have been extensively discussed
in other reviews.89,90 A thorough discussion of these effects has
been recently published by Safavi-Naeini et al.90 It is also worth
mentioning that the pump and Stokes laser frequency detunings
in Eqs. (10a) and (10b) impact the cavity dynamics more strongly
than those in waveguides (which are nonresonant structures): the
steady-state amplitudes for the pump and Stokes fields are atten-
uated as ∣ap,s∣ ∝ ∣sp,s∣2/Δ2

p,s for large detunings (Δp ,s ≫ κp ,s),
which may cause a substantial increase in the threshold power
for Brillouin lasing.76,138 They also play a very important role in
phase-sensitive coherent effects such as electromagnetic induced
transparency (EIT), which can be explored to create Brillouin-
enabled optomechanical switches139,140 and nonreciprocal optical
devices.141,142

Within optical cavities, the most common figure-of-merit is
the single-photon optomechanical coupling rate g0, representing
the frequency shift of the optical mode induced by a single quan-
tum of mechanical excitation.89 Its relation with the optical and
mechanical modes can be derived from perturbation theory100 and is
given by

g0 = −
ωpxzpf

2
(∫ f cav

mb dA + ∫ f cav
pe dV), (11)

where xzpf =
√

h̵/(2meffΩ) is the zero-point fluctuation of the
mechanical mode with effective mass meff = ∫ρ|um|2/max |um|2dV.
f cav
mb and f cav

pe are the area and volume overlap integrands representing
the MB and PE effects, respectively.

3. Cavities vs waveguides
As a final remark on the connection between the distinct

figures-of-merit chosen for the cavity and waveguide, it is worth
mentioning the so-called optomechanical cooperativity. It is clear
that the Brillouin gain GB depends on mechanical dissipation γm,
whereas the coupling constants g̃0 and g0 do not. For cavities, a
condition that is analogous to the net Brillouin gain GBPp > αs is
expressed as C > 1, where C = 4g2

0 ncav/(γmκs) is the cavity coopera-
tivity, with ncav = |ap|2 representing the average number of photons
stored in the cavity. Although the dissipation hierarchy is distinct
for the mechanical or optical lasing discussed above, the condition
C > 1 represents the lasing threshold condition in both cases.79 Albeit
not so popular, an equivalent waveguide cooperativity (C̃) can also
be defined,79 and similar to cavities, the C̃ = 1 condition also repre-
sents net waveguide gain GBPp ≥ αs. Despite the apparent difference
between the figures of merit in Eqs. (9) and (11), they can be directly
compared to each other if a given waveguide is closed into a path
forming an optical cavity —provided that the cavity mode shape
resembles the waveguide counterpart as in ring resonators or pho-
tonic crystal cavities. For instance, a waveguide with length Lwg has
an equivalent cavity single-photon coupling rate given by79,90

∣g0∣ = ∣g̃0∣/
√

Lwg = (
υpυsh̵ωpΩm

4LwgQm
GB)

1/2

. (12)

In the waveguide examples shown in Fig. 1, we compare the GB/Qm
calculated from Eq. (9) and the equivalent g0 from Eq. (12), whereas
in the cavity examples, we compare g0 calculated from Eq. (11) with
the equivalent GB/Qm obtained from Eq. (12). To avoid specifying
the mechanical quality factor for each structure, we quote the Bril-
louin gain as GB/Qm throughout the text examples. To highlight the
material dependence of GB, Appendix B provides a brief discussion
on photoelastic Brillouin scaling with material properties.

4. Boundary and volume overlap integrals
The overlap integrals appearing in Eqs. (9) and (11) depend on

the spatial behavior of the two integrands arising from the moving
boundary and photoelastic perturbations. These are the quantities
that we aim to thoroughly discuss in this tutorial. As such, we choose
to write the expressions for the Brillouin gain [Eq. (9)] differently
from elsewhere96,125 (see Appendix A for comparison). The moving
boundary overlap integrands in Eqs. (9) and (11) are given by100

f (cav, wg)
mb =

u∗ ⋅ n̂(δεmbE∗p,∥ ⋅ Es,∥ − δε−1
mbD

∗
p,� ⋅Ds,�)

max(∣u∣)N(cav, wg)
p N(cav, wg)

s
, (13)

where the permittivity differences are given by δεmb = ε1 − ε2 and
δε−1

mb = (1/ε1 − 1/ε2) in which ε1 = ε0n2
1 and ε2 = ε0n2

2 are the per-
mittivities of the guiding material and surroundings, respectively.
u ⋅ n̂ is the surface-normal component of the displacement vector
u; the fields Ej ,∥ and Dj ,� are material interface tangential electric
and normal displacement fields for the pump (j = p) or scattered
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(j = s) optical mode. The denominator in Eq. (13) represents the
energy or power normalization integrals, Ncav

i = (ε0 ∫ ε∣Ei∣2dV)1/2,
Nwg

i = (2R(∫Ei × H∗i ⋅ ẑdA))1/2. It is worth noting that Eq. (13)
has dimensions of [f wg

mb] = N/W/m2 and [f cav
mb ] = N/J/m2, so they rep-

resent force surface densities per unit power or energy; therefore,
the MB overlap integrals appearing in Eq. (9) for waveguides have
dimensions of linear force densities per unit power [N/W/m]; for
cavities, the overlap integrals of Eq. (11) have dimensions of force
per unit energy [N/J]. This correspondence is expected based on a
virtual work principle69 or following thermodynamic arguments143

and suggests that understanding the Brillouin optomechanical cou-
pling based on perturbation of the optical fields due to photoelastic
and moving boundary effects is equivalent to follow an optical force
description when only conservative forces are considered; another
way of justifying the appearance of a single coupling coefficient
g0 in Eq. (7) or g̃0 in Eq. (10) is through the Manley-Rowe rela-
tions for the coupled-mode equations,8,79 which are based on energy
conservation among all the waves involved in a lossless nonlinear
interaction.144,145

The photoelastic overlap integrands in Eqs. (9) and (11) are
given by1

f (cav, wg)
pe =

E∗p ⋅ δε∗pe ⋅ Es

max(∣u∣)N(cav, wg)
p N(cav, wg)

s
, (14)

where δεpe = −ε0n4p:S is the photoelastic tensor perturbation in
the permittivity, n is the material refractive index, p is the photoe-
lastic tensor, and S = ∇su is the symmetric strain tensor induced
by the mechanical waves, all spatial dependent quantities. Note
that by using a symmetric strain tensor, we are assuming a nearly
optically isotropic material where the roto-optical effect can be
neglected.146,147 The expression given by Eq. (14) has dimensions of
[f wg

pe ] = N/W/m3 and [f cav
pe ] = N/J/m3 and represents force volume

densities per unit optical power or energy. It worth noting that even
though waveguides and cavities are often discussed through distinct
figures of merit, they share essentially the same underlying physical
mechanisms and therefore share the same coupling expressions of
Eqs. (13) and (14), except for the optical mode normalizations. As
pointed out by Van Laer et al.,79 this means that we can anticipate
the Brillouin optomechanical coupling in cavities by understanding
an equivalent waveguide problem. The material properties used in
the simulations discussed here are given in Appendix B.

III. BRILLOUIN COUPLING IN A SILICA GLASS ROD:
AN INSIGHTFUL WAVEGUIDE CASE

A silica rod with circular cross section suspended in air rep-
resents a simple and instructive platform to understand the fun-
damentals of Brillouin optomechanical coupling in waveguides. To
begin with, analytical solutions are available for both optical148

and mechanical149–151 modes, allowing a clear understanding of
the modal structure, of its dependence on material properties and
waveguide dimensions, and infer symmetry-based selection rules
that allow computing coupling coefficients only for relevant modes
—more difficult to do in numerical methods. For optical modes,
the index contrast between silica and air is high enough to allow
strong confinement. Similarly, high-frequency mechanical waves are
reflected at the free glass-air interface and form mechanical modes

confined to the glass rod. Experimentally, this structure can be eas-
ily fabricated in the form of optical fiber tapers,152 with diameters
ranging from tens of micrometers down to a few hundred nanome-
ters while still exhibiting excellent uniformity along its length;153

such a platform has been explored recently in a number of Bril-
louin experiments.49,74,75,154–156 Intuitively, having both modes con-
fined to the same small region leads to stronger interaction. As we
discuss in this section, the physics of Brillouin optomechanical cou-
pling in high-confinement structures is quite more involved and
richer,74,75 to a point that it is even possible to have no interac-
tion whatsoever—an effect we reported recently and referred to as
Brillouin self-cancellation.74

A. Confined mechanical modes vs plane
mechanical waves

We begin discussing the difference in the permittivity perturba-
tion caused by a tightly confined mechanical mode as compared to a
simple plane mechanical wave. In bulk, plane longitudinal and trans-
verse (or shear) waves are independent solutions of the mechani-
cal wave equation. A longitudinal mechanical plane wave has only
the displacement component uz = u0e−ikmz along its propagation
direction z, where u0 is a constant amplitude and km = Ω/V l is
the propagation constant at frequency Ω/2π; V l is the longitudinal
bulk velocity. This plane wave leads to alternating positive and neg-
ative strain layers in the material Szz = ∂uz/∂z = −ikmu0e−ikmz , as
illustrated in Fig. 4(a). Through the photoelastic effect, these plane
strain layers lead to a refractive index grating in the material (homo-
geneous in the plane transverse to the propagation direction). In
waveguides, mechanical modes are generally more complex due to
coupling of longitudinal and shear waves at the surface.149 As a
result, the displacement fields in a mode differ significantly from
a pure plane longitudinal displacement. In general, a given mode
may exhibit all three components ur , uϕ and uz , and in addition
to the dependence on z through the propagating phase e−iβmz , each
component also varies spatially in the transverse plane (r, ϕ). These
mechanical modes exhibit a dispersion relation that detours sig-
nificantly from the bulk, as shown in Fig. 4(b) for the axial-radial
(AR0m) and torsional-radial (TR2m) mode families; the first sub-
script indicates the azimuthal number of the mode, while the sec-
ond one indicates the mode index in order of increasing frequency;
Figs. 4(c) and 4(d) illustrate the fundamental modes for these two
families. At the cut-off frequency (βm = 0), the modes in the axial-
radial AR0m family exhibit either radial displacement (ur) or lon-
gitudinal displacement (uz), and away from the cutoff, they exhibit
both displacement components. In addition to the axisymmetric
AR0m mode family, we note that for azimuthal index 0 a purely
torsional mode family T0m also exists, with only nonzero displace-
ment being uϕ

149 (this family is not shown in Fig. 4 for simplic-
ity). The torsional-radial TR2m modes shown in Figs. 4(c) and 4(d)
contain all three components ur , uϕ, and uz . Notice that both of
these mode families, T0m and TR2m, may induce cross-polarization
scattering.5,10,41,103,154,157–159

The presence of various displacement components and their
complex spatial dependence have two immediate consequences to
the Brillouin optomechanical interaction. First, various elements of
the strain tensor are generated and their complex spatial profiles
cause perturbations in the dielectric permittivity that varies spatially
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FIG. 4. Strain components of mechanical modes. (a) Schematic of Szz strain of a longitudinal plane wave propagating along the z-direction. (b) Dispersion relation for the
AR0m and TR2m modes of a silica rod along with dispersion for a longitudinal (V l , dashed), shear (Vs, dashed-dotted), and surface-wave Rayleigh wave (VR, dotted). (c)
Calculated Srr strain (c1) and Szz strain (c2) of the fundamental axial-radial mode of a silica rod. (d) Calculated Srr strain (d1) and Szz strain (d2) of the fundamental torsional-
radial mode of a silica rod. In (b)–(d), the rod radius was set to a = 0.5 μm, and the mechanical wavevector in (c) and (d) was βm = 9.5 μm−1 [vertical dashed line in (b)],
which corresponds to backward intramode scattering phase-matching at λ = 1.55 μm. A simulation file for parts (c) and (d) is hosted on the data repository.80

not only along the propagation direction z but also in the transverse
plane (r, ϕ). For example, in the AR01 in Fig. 4(c), uz depends on
both (r, z) and thus generates two nonzero strain components: Szz ,
in analogy to the bulk, as well as Szr . Similarly, ur depends on both (r,
z) and causes Srr , Sϕϕ, and Srz . These various strain elements must
all be taken into account in the permittivity perturbation tensor,
and how well they overlap with the optical modes determines the
strength of photoelastic effect. A second consequence of the nature
of mechanical modes in waveguides is that in addition to a local per-
turbation in the dielectric permittivity due to various strain fields,
the existence of transverse displacement distorts or shifts the bound-
ary shape of the waveguide. In the example of Figs. 4(c) and 4(d),
the AR01 mode leads to an increase/decrease in the rod radius while
maintaining a circular cross section, while for the TR21 modes, the
displacement components exhibit a cos(2ϕ) dependence, deform-
ing the cross section from a circular to a somewhat elliptical shape.
This shift in the waveguide boundary can also be interpreted as a
local and abrupt dielectric permittivity perturbation. For the AR01,
a shift outwards of the circular rod boundary is equivalent to an
increase in the refractive index from nair = 1 (air) to nglass ≈ 1.45
(glass) in the immediate surrounding region. For the TR21, the index
increases in the regions where the core is stretched out and decreases
where it contracts. A detailed discussion is provided further in this

section with specific examples illustrating how both manifestations
discussed here—presence of spatially varying strain fields and pres-
ence of transverse displacement—influence the overall efficiency of
the Brillouin optomechanical coupling. One final important com-
ment here is regarding selection rules160 that determine which
families of mechanical modes interact with the optical modes. In
a circularly symmetric waveguide, the Brillouin optomechanical
coupling coefficients, given by Eqs. (9), (13), and (14), involves
azimuthal integrals over [0, 2π] of the product of three fields:
(i) the pump electric field, (ii) the scattered wave electric field,
and (iii) either directly the mechanical displacement field (for the
MB effect) or its spatial derivatives (representing strain in the PE
effect). In this case, there is a sinusoidal azimuthal dependence for
both optical and mechanical modes148,149 and we can express the
azimuthal dependence of the pump, scattered, and mechanical fields
as f (qpϕ), g(qsϕ), and h(qmϕ), respectively, where the functions f,
g, and h are either cos or sin functions and qp, qs, and qm are inte-
ger azimuthal indices. Performing the azimuthal integral results in
a necessary condition for nonzero overlap, qp − qs = qm or qp + qs
= qm. For example, this explains why intramode scattering involving
the fundamental optical mode HE11, with azimuthal index qp = qs
= 1, involves only mechanical modes with azimuthal index qm = 0 or
qm = 2.
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B. Confined optical modes: Boundary field strength
and longitudinal component

The moving boundary effect perturbs the dielectric permittivity
only near the waveguide glass-air interface. Although the high index
difference between glass and air causes large perturbation, its contri-
bution to the Brillouin optomechanical interaction is only relevant if
the optical mode extends significantly toward the waveguide bound-
ary. This is the case for a small diameter, as is illustrated in Fig. 5(a)
that shows the transverse ∣Et ∣ =

√
∣Er ∣2 + ∣Eϕ∣2 and longitudinal |Ez|

field profiles (normalized by the maximum of the total field norm),
for the y-polarized fundamental mode in a 1 μm diameter rod. In
Fig. 5(b), the ratio |Et(a)|/|Et(0)| of the electric field strength at the
waveguide boundary r = a relative to its value in the center r = 0 is
plotted as a function of the waveguide diameter. Since the surface
discontinuity of the normal electric field Er leads to an asymmetry
in the transverse field profile, to build Fig. 5(b), we chose to eval-
uate |Et(a)| along the y-axis outside the surface. As the diameter is
reduced, the mode expands out toward the surface and eventually its
strength at the surface becomes comparable to and even larger than
its value at the center. This is the regime where the moving bound-
ary is expected to give the most significant contribution to overall
Brillouin optomechanical coupling.

Another relevant point in high confinement waveguides is the
role of the longitudinal electric field component, Ez , in the Bril-
louin scattering process. The fundamental optical mode HE11 is not
purely transverse-electric and always contains the longitudinal com-
ponents Ez . Figures 5(a) and 5(b) show that for a diameter near the
diffraction limit—where mode confinement is maximum—the lon-
gitudinal field Ez is comparable to the transverse field Et . The ratio
max(|Ez|)/|Et(0)| reaches a maximum of ≈0.5 near the diameter of

FIG. 5. (a) Optical mode profile (transverse and longitudinal fields, in arbitrary
scale) for a 1 μm diameter rod. (b) Ratio of surface-to-center transverse field
|Et (a)|/|Et (0)| and longitudinal-to-transverse field max(∣Ez ∣)/∣Et(0)∣ as a func-
tion of diameter. |Et (a)| is evaluated along the vertical axis in (a) and outside the
boundary.

0.7 μm and decreases too far above or below it as the mode size
is significantly increased at these limits. The presence of a strong
longitudinal field impacts the optomechanical coupling in waveg-
uides in two ways: first, it is no longer enough to consider the over-
lap between the permittivity perturbation and the transverse elec-
tric field only, but one must also consider the contribution from
the longitudinal field in the overlap integrands of Eqs. (13) and
(14). Second, and particularly in backward scattering, the longitudi-
nal field changes sign for backward-propagating mode vs forward-
propagating mode.101 This represents a sort of mode mismatch that
results in a reduction of the scattering efficiency when compared to
the forward case.

C. Brillouin optomechanical coupling
To illustrate how these aspects resulting from the confine-

ment of mechanical and optical modes impact the characteristics
of Brillouin optomechanical interaction, we discuss specific exam-
ples in detail. We start with the moving boundary effect induced by
mechanical modes with different transverse field profiles, covering
elements of both forward and backward scattering. We then discuss
the more complex photoelastic effect and finally add the contribu-
tions from the two effects to obtain the overall Brillouin optome-
chanical gain. Throughout this discussion, we identify regimes in
which one or the other mechanism dominates and regimes in which
both contributions are relevant and, combined either construc-
tively or destructively, lead to enhanced or suppressed Brillouin
optomechanical interaction, respectively.

1. Moving boundary effect
The optomechanical coupling in a waveguide due to the mov-

ing boundary effect, given by Eqs. (9) and (13), involves a line inte-
gral along the waveguide boundary. For our case, it is convenient to
cast this equation in cylindrical coordinates and directly express the
integrand in terms of the electric field components inside the mate-
rial using D = εE and in terms of the radial mechanical displacement
component ur (normal to the rod surface). The result is

∫ f wg
mbdl ∝ aε0(n2

glass − n2
air)∫

2π

0
ur(a,ϕ)

× [∣Eϕ(a,ϕ)∣2 +
n2

glass

n2
air
∣Er(a,ϕ)∣2 ± ∣Ez(a,ϕ)∣2]dϕ, (15)

where we have considered both pump and scattered fields propa-
gating in the same transverse optical mode, the ± sign represents
forward and backward scattering, and the proportionality symbol
is used to avoid writing the optical and mechanical normalization
factors of Eq. (13). The change in sign arises due to the opposite
direction of Ez for forward and backward propagating fields. The
factor n2

glass/n2
air multiplying the term containing the normal com-

ponent of the electric field Er arises due to the field discontinuity,
where we chose to evaluate Er inside the boundary. For simplic-
ity, we assume that the optical pump and scattered fields prop-
agate in the fundamental HE11 mode (y-polarization), for which
the azimuthal dependencies are E(r ,z)(a, ϕ) = E(r ,z) sin(ϕ) and
Eϕ(a, ϕ) = Eϕ cos(ϕ). For the mechanical modes, we consider
both families illustrated in Fig. 4, the AR0m and TR2m, the former
being circularly symmetric ur(a, ϕ) = ur and the latter varying as
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TABLE I. Form of the moving boundary overlap integrals for different modes and
scattering directions.

Direction Mode ∫ f wg
mbdl

FW AR0m ε0(n2
glass − n2

air)πaur(
n2

glass

n2
air
∣Er ∣2 + ∣Eϕ∣2 + ∣Ez ∣2)

FW TR2m ε0(n2
glass − n2

air) π2 aur(
n2

glass

n2
air
∣Er ∣2 − ∣Eϕ∣2 + ∣Ez ∣2)

BW AR0m ε0(n2
glass − n2

air)πaur(
n2

glass

n2
air
∣Er ∣2 + ∣Eϕ∣2 − ∣Ez ∣2)

BW TR2m ε0(n2
glass − n2

air) π2 aur(
n2

glass

n2
air
∣Er ∣2 − ∣Eϕ∣2 − ∣Ez ∣2)

ur(a, ϕ) = −ur cos(2ϕ) (the minus sign is chosen so that the radial
displacement is positive along the y-axis for a positive ur). Here,
all fields are evaluated at the waveguide boundary, ur = ur(a) and
Ei = Ei(a) for i = r, ϕ, and z [remembering to evaluate the discontin-
uous field Er(a) inside the boundary]. Performing the integral over
[0, 2π], the result is shown in Table I.

A first observation is that if the longitudinal component Ez
is negligible compared to the transverse fields, such as in the bulk
or far below and far above the diffraction limit in Fig. 5(b), the
results are no different for forward and backward cases. For a 1 μm
diameter rod, on the other hand, its impact is significant. The term
∣Ez ∣2/(n2

glass/n2
air∣Er ∣2 + ∣Eϕ∣2) is 0.46, and this factor alone means that

the term in parentheses for the AR0m is 2.7 times larger for forward
than for backward. For the TR2m, ∣Ez ∣2/(n2

glass/n2
air∣Er ∣2 − ∣Eϕ∣2) = 2,

and the term in parentheses is 3 times larger in absolute value for
forward than for backward.

In Figs. 6(a) and 6(b), we show the results of the moving bound-
ary overlap integral for different mechanical modes for the case of
forward scattering. Broadly speaking, we can see that for all modes
the overlap integrals increase (in absolute value) as the diameter is

reduced until the diffraction limit is reached, and beyond it, the
optical mode expands again, reducing the overall intensity. The
overlap integral for the AR02 and TR21 modes is represented by the
blue solid lines (dashed lines for higher order modes) in Fig. 6; note
that the AR01 mode frequency approaches zero at cutoff (see Fig. 4),
and therefore, we chose to plot the AR02 in Fig. 6. It is not surprising
that the moving boundary contribution is larger for the symmetri-
cal AR02 than for the TR21, simply because in the former the entire
waveguide boundary shifts outwards (taking positive ur) causing a
positive permittivity perturbation along the complete rod circum-
ference. In the case of TR21, on the other hand, the boundary shifts
partially inwards and partially outwards, reducing the net result.
It may be surprising that in this case the result is not identically
zero, since as the mechanical displacement varies azimuthally with
cos(2ϕ) and its integral over [0, 2π] is zero. Of course, the integral
∫ f wg

mbdl involves the overlap of the mechanical displacement with the
electric field and not simply the line integral of ur . The result would

be identically zero only if the term
n2

glass

n2
air
∣Er ∣2 − ∣Eϕ∣2 + ∣Ez ∣2 in Table I

was zero. The reason this is not the case is a consequence of (i) the
field discontinuity at the high-contrast interface, which makes the
boundary integral somewhat unbalanced by the term n2

glass/n2
air, and

(ii) the presence of a strong longitudinal field. Of course, if we make
nglass → nair, all terms in Table I tend to zero as the boundary index
difference is reduced. However, the moving boundary contribution
tends to zero faster for the TR mode relative to AR. This is because
moving toward a weakly guidance approximation, the unbalance
caused by the field discontinuity tends to disappear as n2

glass/n2
air → 1

and |Eϕ|2 → |Er|2.
Another instructive example is the moving boundary coupling

induced by the fundamental flexural mechanical mode161 F11, as
illustrated in Fig. 7(a). For this mode, ur(r = a, ϕ) = urcos(ϕ), and
so its perturbation is antisymmetric with respect to the vertical
axis in Fig. 7(a). We analyze two cases, intramode scattering HE11
→ HE11 and intermode scattering HE11 → HE21; in all cases,
the modes are y-polarized. It is intuitive that an antisymmetric

FIG. 6. Overlap integrals for axial-radial modes in (a) and torsional-radial modes in (b), both for forward HE11 → HE11 scattering. Contributions from moving boundary (mb, in
blue) and photoelastic (pe, in red) effects are shown individually along with their direct sum (green). In (c), the total Brillouin gain [GB(Ω)/Qm] is shown for various mechanical
modes as a function of the rod diameter [the linewidth used in the Lorentzian line shape L(Ω) was γm = Ωm/103]. Note that only AR02 and AR05 appear in (c) since AR0(3,4)

are purely longitudinal modes at cutoff. A simulation file for parts (a)–(c) is hosted on the data repository.80
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FIG. 7. (a) Fundamental flexural mode in a rod (color represents the Szz strain component). The asymmetric perturbation caused by a lateral shift in the rod cross section
induces coupling between the even fundamental HE11 mode and the odd HE21 mode. (b) Overlap integrals showing contributions from moving boundary (mb, in blue) and
photoelastic (pe, in red) effects are shown individually along with their direct sum (green). In (c), the total Brillouin gain [GB(Ω)/Qm] is shown for various high-order flexural
modes as a function of the rod diameter [the linewidth used in the Lorentzian line shape L(Ω) was γm = Ωm/103]. A simulation file for parts (a)–(c) is hosted on the data
repository.80

perturbation should not cause coupling between two symmetric
modes, and it is, in fact, the result observed as the line integral
∫ f wg

mbdl is zero for both forward and backward cases. As illustrated in
Fig. 7(a), a simple lateral shift of the cross section causes an increase
in the permittivity on one side and a decrease in the same magnitude
on the other side. Since the optical modes involved are symmetric,
the overlap integral is zero (note that, differently than the TR21 case
previously discussed, here the optical field is discontinuous along the
vertical axis in Fig. 7, where the perturbation is zero, and therefore
has no impact on the result). On the other hand, coupling between
the even fundamental HE11 mode and the odd high order mode
HE21 is highly efficient. Mathematically, the azimuthal dependence
of the HE21 mode is E21,(r ,z)(r = a, ϕ) = E21,(r ,z) sin(2ϕ) and E21,ϕ(r
= a, ϕ) = E21,ϕ cos(2ϕ) and so performing the integral over [0, 2π]
along the rod circumference, the result is

∫ f wg
mbdl ∝ ε0(n2

glass − n2
air)

π
2

aur

×
⎛
⎝

n2
glass

n2
air

E∗21,rE11,r + E∗21,ϕE11,ϕ ± E∗21,zE11,z
⎞
⎠

, (16)

where again the ± represents the forward and backward scattering,
respectively. One way to think about this problem is in terms of local
mode expansion as illustrated in Fig. 7(a). The local fundamental
mode of the perturbed waveguide (i.e., the shifted rod) is represented
by a combination of the HE11 and HE21 modes in the basis of the
unperturbed waveguide. The results of the overlap integral Eq. (16)
for F11 are shown in Fig. 7(b).

2. Photoelastic effect
The overlap integral we discussed so far for the moving bound-

ary effect is somewhat straightforward in the sense that it involves
directly the mechanical displacement. On the other hand, the over-
lap integral for the photoelastic effect ∫ f wg

pe dA, where f wg
pe is given

by Eq. (14), is more complicated because one needs to first under-
stand the strain fields caused by the mechanical displacements and

then combine the different strains to calculate the permittivity per-
turbation tensor δεpe. This is straightforward for bulk since the lon-
gitudinal mechanical plane wave only creates one strain component
Szz , and thus, all terms of the permittivity tensor are proportional
to Szz . As we mentioned earlier, generally speaking, a mechani-
cal mode may have all displacement components ur , uϕ, and uz

and each one depending not only on z through e−iβmz but also on
the transverse components (r, ϕ). Before going to more complex
cases, it is instructive to treat intramode forward scattering involv-
ing both incident and scattered optical fields in the HE11 mode and
consider only the azimuthally symmetric mechanical modes AR0m.
We can then compare the results of the photoelastic perturbation
with the results obtained in Sec. III C 1 for the moving bound-
ary for the same mechanical modes. The phase-matching condi-
tion requires the mechanical mode to be at the cut-off point, i.e.,
βm = 0 for the forward scattering. Generally, the azimuthally sym-
metric mechanical modes exhibit a coupled radial (ur) and axial (uz)
motion; however, at the cut-off point, one branch becomes purely
radial [only ur(r) is nonzero]. In this case, there are only two nonzero
strain components Srr = ∂ur/∂r and Sϕϕ = ur/r. Figures 8(a) and 8(b)
show the mechanical displacement profiles as well as the strain fields
for the fundamental AR02 and second order AR05. The fundamen-
tal mode exhibits positive displacement in the entire cross section,
and the strain fields are almost entirely positive (except for a small
radial compression in the outer region). On the other hand, the AR02
modes have one node, with positive displacement in the inner core
region and negative displacement in the outer region. This leads to
positive and negative strain regions.

In the presence of only Srr and Szz , the elements of the permit-
tivity perturbation tensor are

δεrr = −ε0n4
glass(p11Srr + p12Sϕϕ),

δεϕϕ = −ε0n4
glass(p12Srr + p11Sϕϕ),

δεzz = −ε0n4
glass(p12Srr + p12Sϕϕ),
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FIG. 8. Radial displacement and
strain fields at cutoff (βm = 0) for two
azimuthally symmetric modes AR02
(3.77 GHz) in (a) and for AR05 (10.19
GHz) in (b); the blue line represents
ur /max(|u|), while the green (red) rep-
resents Srr a/max(|u)| [Sϕϕa/max(|u|)],
and a = 0.5 μm is the rod radius. The
resulting elements of the permittivity per-
turbation tensor are shown for the same
modes in (c) and (d). The integrand
in Eq. (17), properly normalized as in
Eq. (14), is shown in (e) for AR02 with
entirely negative perturbation throughout
the core and in (f) for AR05 with regions
of negative and positive perturbation. A
simulation file for parts (a)–(f) is hosted
on the data repository.80

where p11 and p12 are the photoelastic coefficients for silica (see
Table II). Figures 8(c) and 8(d) show all three elements δεrr , δεϕϕ,
and δεzz for both modes. As the photoelastic coefficients are pos-
itive in silica, a region with positive strain (tension) experiences
a decrease in the permittivity, while a region with negative strain
(compression) experiences an increase. The AR02 mode results in
negative permittivity perturbation throughout the entire glass cross
section; however, the AR05 shows regions with positive and negative
perturbation. These examples illustrate well that confined mechan-
ical modes exhibit spatial variations in the transverse plane that, in
turn, dictates the spatial profile of the permittivity perturbation. One
might expect that in the AR05 case, these regions of positive and neg-
ative perturbation might result in a much lower average perturbation
for the AR02 mode. Although this intuition is correct, the exact result
still depends on the spatial overlap between the perturbation profile
and the optical mode. This overlap provides a sort of weighting for
the positive and negative contributions. In cylindrical coordinates,
the PE overlap integral for azimuthal symmetric mechanical modes
at the cutoff is

∫ f wg
pe da∝ ∫ (δεrr ∣Er ∣2 + δεϕϕ∣Eϕ∣

2 + δεzz ∣Ez ∣2)da. (17)

All terms in Eq. (17) are dependent on the transverse coordinate,
i.e., Ei = Ei(r, ϕ) for i = r, ϕ and z and δεi = δεi(r) for i = rr, ϕϕ,
and zz. Figures 8(e) and 8(f) show the spatial profile of the integrand
in Eq. (17) for both modes. As expected, the AR02 mode leads to
negative permittivity perturbation throughout the entire rod. For the
AR05 mode, the optical mode being more intense in the center of
the rod somewhat favors the negative perturbation region over the
positive one, but still a significant positive outer region reduces the
net photoelastic effect. The final results of the photoelastic overlap
integral for the AR02 and AR05 modes are shown in Fig. 6(a) (solid
and dashed red lines, respectively). For completeness, the results for
the TR21 and TR23 modes are also plotted in Fig. 6(b). Similar to the
moving boundary case, the photoelastic overlap integrals increase
(in absolute value) as the diameter is reduced until the diffraction

limit and decreases beyond it. As expected, the presence of a node in
the AR05 mode results in a much weaker photoelastic contribution
relative to AR02.

Having discussed individually the contributions from moving
boundary and photoelastic effects, we can now compare the results
shown in Figs. 6(a) and 6(b) for forward scattering. As mentioned
previously, the moving boundary contribution for azimuthal sym-
metric AR0m modes is always positive. On the other hand, the pho-
toelastic is mostly negative for both modes. The total represent-
ing the direct sum of the overlap integrals show that the moving
boundary dominates for AR05. For the AR02, the photoelastic dom-
inates for larger diameters while the moving boundary dominates
for smaller diameters. Interestingly, one can see that for a diameter
of 0.72 μm, the total perturbation is zero as the negative photoelas-
tic contributions exactly cancel out the positive moving boundary
contribution. We experimentally demonstrated this Brillouin self-
cancellation effect for the case of backward scattering74 in which the
same mechanical wave causes two opposing photoelastic and mov-
ing boundary perturbations that cancel out each other. The numer-
ical results show here that this cancellation also occurs for forward
scattering. The results for the TR21 and TR23 modes are shown in
Fig. 6(b). For TR21, the two effects add constructively, while for
TR23, destructively, including a point of Brillouin self-cancellation
around 1 μm. To conclude this discussion on forward scattering,
a map of the total intramode HE11 → HE11 forward Brillouin gain
spectrum (GB/Qm) as a function of the rod diameter is shown in
Fig. 6(c). Clearly, only the AR0,m and TR2,m modes appear in the
spectrum (only mechanical modes with azimuthal index 0 or 2 con-
tribute to HE11 → HE11). Similarly, a map of the GB/Qm for inter-
mode HE11 → HE21 forward Brillouin scattering induced by flex-
ural modes is shown in Fig. 7(c), where only F1,m and F3,m modes
appear due to selection rules. In both cases, gains on the order of
GB/Qm ≈ 10−2 W−1m−1 are observed.

Turning to backward scattering, phase-matching determines
that the mechanical propagation constant should be βm = 2βp and
thus represents a propagating mechanical mode (i.e., not at the
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FIG. 9. (a) AR01 radial and axial dis-
placement profile for a 1 μm diam-
eter rod (max |u| normalized) for
βm = 9.5 μm−1. The inset shows an
illustration of the mechanical deforma-
tion. (b) Resulting strain [Sija/max(|u)|]
profiles along with the total strain pro-
file weighted by the photoelastic coef-
ficients. (c) Overlap integral as a func-
tion of diameter for HE11 → HE11 back-
ward scattering induced by AR01 mode.
Blue, red, and green represent mov-
ing boundary (mb), photoelastic (pe),
and total, respectively. (d) Map of Bril-
louin gain [GB(Ω)/Qm] as a function
of diameter for HE11 → HE11 back-
ward scattering, including all mechani-
cal modes in the frequency range shown
[the linewidth used in the Lorentzian line-
shape L(Ω) was γm = Ωm/103]. Parts
(a) and (b) reproduced with permission
from Florez et al., Nat. Commun. 7,
11759 (2016). Copyright 2016 Author(s),
licensed under a Creative Commons
Attribution 4.0 Unported License. A sim-
ulation file for parts (c) and (d) is hosted
on the data repository.80

cutoff). For βm ≠ 0, we no longer can decouple ur and uz for AR0m
modes, as was the case for intramode forward scattering. This is
an interesting example because ur and uz oscillate out of phase.
In other words, an axial compression is usually accompanied by a
radial expansion (and vice versa), as shown in Fig. 9(a) for the AR01
mode. One can use intuition to expect that these out-of-phase com-
ponents may lead to opposite photoelastic contributions. The dom-
inant strain fields and their combination to obtain the permittivity
perturbation δεrr are shown in Fig. 9(b). We can observe clearly that
the contributions from the transverse strain components Srr and Sϕϕ
are mostly opposite to the axial strain Szz . Specifically, note that there
is an axial compression (negative strain) in most of the inner core
region, but also tension (positive strain) in the outer region. On the
other hand, both transverse components are positive (expansion)
in the central region, although a bit more complicated at the bor-
der. The combination p11Srr + p12Sϕϕ + p12Szz results in an effective
expansion in the inner core region, leading to negative permittivity
perturbation, and an effective compression in the outer region, lead-
ing to positive perturbation. There are two interesting scenarios to
discuss. First, depending on the weighing provided by the overlap
with the optical mode, the positive region can indeed exactly can-
cel out the negative perturbation and the photoelastic contribution
becomes zero. For a silica glass rod, this occurs exactly at 0.51 μm
diameter as is shown in Fig. 9(c). The second interesting aspect is
that the overlap weighting may favor either the positive or negative
regions, and the net photoelastic effect can either reinforce the mov-
ing boundary effect or oppose it, as shown in Fig. 9(c). In the latter,
it is possible that the negative net photoelastic perturbation exactly
compensates for the positive moving boundary effect, which occurs
for the AR01 mode at a diameter of 1.1 μm, leading to the Brillouin

self-cancellation effect for backward scattering. A map of the overall
backward Brillouin gain spectrum as a function of the rod diameter
is shown in Fig. 9(d).

As a final instructive aspect, we discuss how the mechanical
mode hybridization, i.e., coupling between purely longitudinal and
purely shear waves, impacts the Brillouin optomechanical coupling.
The analytical solution for the axial displacement component for
azimuthally symmetric modes can be written as the sum of two
terms, uz = c1J0(klr) + c2J0(ksr). The first term represents the con-
tribution from the longitudinal wave to the mode structure and the
second from the transverse (shear) wave. Here, c1 and c2 are con-
stants, and kl =

√
(Ω/Vl)2 − β2

m and ks =
√
(Ω/Vt)2 − β2

m are
the transverse wavevectors for the longitudinal and shear compo-
nents, respectively. Figure 10 shows the plots of uz for three specific
modes indicated as circles in the Brillouin gain map of Fig. 9(d),
AR02, AR03, and AR04. These modes have their respective phase-
matching frequencies below, almost at, and above the dispersion

FIG. 10. Longitudinal (blue) and shear (red) components that added together gives
the total mechanical displacement uz (black) for AR02 (a), AR03 (b), and AR04 (c).
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curve for a purely longitudinal wave in the bulk [dashed black curve
in Fig. 9(d)]. These positions basically determine the character of
the mode, in other words, the relative contributions of the longitu-
dinal and shear terms to the total displacement field. This can be
seen in Fig. 10, where the blue and red curves represent the longi-
tudinal and shear components, respectively, which added together
gives uz (black curve). The AR02 sits below the bulk longitudinal dis-
persion curve, which means its transverse wavevector kl is imaginary
while ks is real and quite large. As a result, uz exhibits slow and fast
oscillating components in the radial direction. The total mechanical
displacement is predominantly given by the shear component and
its transverse oscillations reduce the photoelastic effect. On the other
hand, the AR03 mode sits slightly above the bulk longitudinal disper-
sion curve, and its transverse longitudinal wavevector kl is real and
very small (its shear component is also real, but quite large). This
leads to a mode that, although having both longitudinal and shear
components of about the same magnitude, its longitudinal term has
practically no transverse oscillation (almost like a plane bulk longitu-
dinal wave!) and therefore exhibits a quite strong photoelastic effect.
This is the reason why the mode with a maximum Brillouin gain at
a given diameter in the map of Fig. 9(c) is always following the lon-
gitudinal plane wave dispersion relation. The next AR04 mode has
large kl and ks, and thus, both longitudinal and shear terms oscillate,
thus reducing the photoelastic effect.

IV. BRILLOUIN COUPLING IN AXISYMMETRIC
MICROCAVITIES

An insight into Brillouin scattering in optical microcavities
can be drawn by analyzing the optomechanical interaction in cir-
cular symmetric cavities. In this type of cavity, light confinement
is well understood using the concept of whispering gallery modes
(WGMs).162 The high orbital angular momentum of the circulat-
ing optical field concentrates light at the very edge of the circular
symmetric dielectric, where it can propagate with very low radia-
tion losses. In contrast to other light-confinement approaches, such
as photonic bandgaps, WGMs can be supported by structures with
rather low refractive index contrast—provided the cavity radius is
large enough. In microdisk and microring cavities, the association of
the whispering gallery effect and the vertical confinement provides
the necessary knobs to enhance the strength of the optomechani-
cal interaction. Indeed, this kind of device has not only been the
geometry of choice of many cavity nonlinear optics experiments but
also the host for landmark experiments in cavity optomechanics and
Brillouin scattering.51,105,126,163

In the context of the optomechanical interaction, the spatial
distribution of optical and mechanical modes is of primary impor-
tance.164,165 As discussed in Sec. II A, the cylindrical symmetry
ensures that the optical and mechanical fields will have a propaga-
tion phase in the form exp(−imϕ + iωt), where the azimuthal num-
ber m is an integer and defines the orbital angular momentum of a
given mode and, therefore, its confinement toward the cavity bound-
ary. Important characteristics of optical and mechanical WGMs can
be drawn by considering an infinite cylinder cavity.

A. Optical and mechanical radial confinement
The radial confinement of optical WGMs in an infinite

dielectric cylinder is a key factor determining the Brillouin

optomechanical coupling and can be easily estimated as follows. The
axial optical field (Ez , Hz) radial dependence is given by Bessel func-
tions in the form Jm(kr), where k = ncorek0 is the radial wavevector
and ncore is the cavity dielectric refractive index. If we assume that an
optical mode of pth radial order has a node at the cylinder bound-
ary (r = R), the resonant wavevectors are given by k = zm ,p/R with
zm ,p being the pth root of Jm(z). Due to their high angular momen-
tum, these modes will penetrate only slightly into the cylinder body.
The inner radial position ri at which the modes begins to fall-off
[J′m(kr) = 0] will be given ri = z′m/k; z′m is the first nonzero root of
J′m(z). Under these approximations, we can estimate that the pth
radial order optical mode will be confined within the radial region
of width wopt

r = R− ri = R(1− z′m/zm,p) close to the boundary. Using
the approximation z′m ≈m for large m, we can write

wopt
r ≈ R(1 −m/zm,p). (18)

If we employ the mapping discussed in Sec. II A for the azimuthal
numbers (m → k0neffR), Eq. (18) predicts wopt

r = 700 nm for funda-
mental TM-like mode (neff ≈ 1.8, m ≈ 35) of a R = 5 μm disk radius
silicon microdisk, whereas the TE-like mode (neff ≈ 2.8, m ≈ 56)
is predicted to have wopt

r = 595 nm. In Fig. 11, we show the full vecto-
rial modes calculated for a silicon microdisk. The simple prediction
of Eq. (18) for the modes radial extents are indicated and agrees well
with the actual mode profiles. However, the infinite cylinder picture
will not capture the full vectorial distribution of the microdisk opti-
cal modes highlighted in Figs. 11(b) and 11(c). In analogy to the
silica rod, where the out-of-plane z-component of the field is large
with respect to the transverse components, the out-of-plane cavity
field Eϕ is also large, relative to the in-plane (Er , Ez) components,

FIG. 11. Optical modes of a silicon microdisk. (a) Schematic of a silicon microdisk
cavity with thickness t = 250 nm and radius r = 5 μm. (E2

r + E2
z)

1/2
/max(∣E∣)

(left) and longitudinal |Eϕ|/max(|E|) (right) of (b) TE-like (m ≈ 52) and (c) TM-like
(m ≈ 35) optical modes calculated at λ = 1.55 μm. The horizontal double-
arrows indicate the radial extent width predicted by Eq. (18), (wopt,TE

r , wopt,TM
r )

≈ (595, 700) nm. A simulation file for parts (b) and (c) is hosted on the data
repository.80 Part (a) was adapted from Espinel et al., Sci. Rep. 7, 43423 (2017).
Copyright 2017 AIP Publishing LLC.

APL Photon. 4, 071101 (2019); doi: 10.1063/1.5088169 4, 071101-16

© Author(s) 2019

https://scitation.org/journal/app


APL Photonics TUTORIAL scitation.org/journal/app

in a tightly confining microcavity. This aspect will play a crucial
role in the optomechanical coupling integrand as the tangential Eϕ
explicitly appears in the overlap integral of Eqs. (13) and (14).

A similar approach can be evoked to estimate the radial extent
of the mechanical WGMs. As in the silica rod waveguide, the cou-
pling of the shear and longitudinal waves at the cylinder’s free-
surface create hybrid mechanical modes. Each wave component
contributes with distinct radial wavevectors k(s , l) = Ω/V (s , l), and
the hybrid mechanical modes will have two characteristic radial
extensions,

w(s,l)r ≈ R(1 −MV(s,l)/ΩR), (19)

where the subscripts (s, l) indicate transverse (shear) and longitu-
dinal waves. When deriving Eq. (19), we considered that Jm(k(s , l)R)
= 0 and thus that k(s , l)R is a zero of the Bessel function. Inspecting
Eqs. (18) and (19), we notice that optical and mechanical modes may
have distinct radial extensions depending on their azimuthal num-
bers (m, M). Indeed, this simple formula correctly predicts that the
phase-matched mechanical modes involved in intramode forward
Brillouin scattering [M = 0, see Eq. (2)] will be distributed through-
out the whole cavity radial extent, i.e., w(s,l)r ≈ R; this situation is
typical of cavity optomechanics experiments.51 Such radial spread
of the M = 0 mechanical modes suggests that they will induce a
rather weak radial strain, a simple explanation of why the MB effect
is dominant in many WGM cavity optomechanics experiments. This
also explains why mechanical radial gratings are needed to confine

M = 0 mechanical modes toward the edge.78 Meanwhile, the
mechanical modes that are phase-matched for intramodal backward
scattering [M = 2mp, see Eq. (2)] will be strongly concentrated at the
disk edge. For instance, modes lying very close to the longitudinal or
shear bulk velocity lines, Ω = MV ( l ,s)/R will be strongly concentrated
toward the disk edge (w(l,s)r ≈ 0) and should weakly interact with the
optical field.

B. Silicon microdisk cavity: An insightful cavity case
Although the rough estimates above help us to understand the

role of the whispering gallery effect in the optomechanical overlap,
they are only toy-models to the full picture. In order to show inter-
esting properties of more realistic cylindrical symmetry devices, we
investigate the Brillouin optomechanical interaction within a sin-
gle silicon disk. As highlighted in Fig. 11, this device shares many
of the whispering gallery characteristics of the infinite cylinder but
also the strong vertical confinement typical of high-index contrast
integrated photonic devices. We further explore this device as a ped-
agogical example on how Brillouin optomechanics can be affected in
high-index contrast microcavities.

1. Dispersion relation of a silicon microdisk
In order to identify the mechanical modes that can be phase

matched with the optical modes in any of the Brillouin configura-
tions described in Sec. II A, we show in Fig. 12(a) the mechanical

FIG. 12. Mechanical dispersion relation and modes of a silicon disk. (a) Dispersion relation diagram for even mechanical modes (gray curves). The dashed and dashed-dotted
black solid lines represent the longitudinal (V l = 9660 m/s) and transverse (V t = 5340 m/s) bulk Si mechanical wave velocities. The blue-dashed lines represent the dispersion
relation of the first two Lamb modes (L1 and L2) of a 250 nm thick silicon slab (inset illustrates d1 slab mode at M = 70). The vertical gray-dashed lines [M = (70, 104)] indicate
the phase-matching azimuthal number for the (TM, TE) optical modes at 1550 nm, mp = M/2 = (35, 52). (b) Zoomed-in view the dispersion of the even modes around of
M = 70. The red dashed lines represent the dispersion of the whispering gallery modes for an infinite cylinder. The blue dashed line is the dispersion of the d1 slab-mode. The
markers along the vertical dashed line refer to representative modes. (c) Radial breathing mode evolving into a surface (Rayleigh) mode as the azimuthal number increases,
M = (0, 10, 30). (d) Radial breathing mode in the Rayleigh limit (M = 70). (e) First modes of the whispering gallery family; the double-arrows indicate the radial extent predicted
for these modes using Eq. (19), w(t)

r = (650, 955, 1185) nm. (f) First modes of the dilatational family. Reproduced with permission from Espinel et al., Sci. Rep. 7, 43423
(2017). Copyright 2017 Author(s), licensed under a Creative Commons Attribution 4.0 Unported License. A simulation file for part (a) is hosted on the data repository.80
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dispersion relation of a 250 nm thick silicon-on-air microdisk cavity
and some of its representative mechanical modes. Although the dis-
persion branches in Fig. 12(a) are quite complex, we can understand
their behavior by joining the aspects of the mechanical WGMs in an
infinite cylinder with the aspects of mechanical Lamb modes in a slab
waveguide. There are three mode groups that can be clearly iden-
tified; they are the singleton Rayleigh edge (e-mode), dilatational
(d-modes), and the whispering gallery (w-modes) and are shown in
Figs. 12(d)–12(f). The singleton Rayleigh edge mode originates from
the fundamental radial breathing mode (RBM) that concentrates
toward the disk edge as the azimuthal number increases; this transi-
tion to edge mode is shown in Fig. 12(c). At M = 0, Eq. (19) correctly
predicts the radial extent of the RBM mode, while it completely fails
at large M with negative-valued predictions for the modal radial
extent. The physics behind this failure is that the radial breathing
mode becomes a surface mode as M increases and shear velocity
would need to be replaced by the Rayleigh-wave velocity; this is also
clear in Fig. 12(a) where it can be seen to lie below the shear veloc-
ity dispersion curve at low azimuthal numbers and move towards
the Rayleigh velocity beyond M ≈ 20. Close to the phase-matching
point for the TM-mode (M = 70), the RBM is transformed into an
edge mode, as shown in Fig. 12(d). Despite the effects of vertical con-
finement, the e-mode dispersion has a good quantitative agreement
with the cylinder surface mode, as highlighted in the zoomed-in
view of Fig. 12(b) where the analytical infinite cylinder dispersion
relation was overlaid with the disk’s. Just above the shear-velocity
line, there is also a fantastic agreement with the cylinder dispersion
relation, and they are WGM-like (w-modes), shown in Fig. 12(e),
with quasi pure radial-azimuthal (ur , uϕ) displacement profiles that
are very uniform along the z-direction. The predictions of Eq. (19)
for the radial extent of w-modes are very precise, as shown by the
double-arrows in Fig. 12(e).

Finally, above the slab Lamb-mode dispersion relation (L1),
dilatational modes with large vertical displacement (uz) appear.
These modes do not exist in an infinite cylinder, but resemble dilata-
tional Lamb modes of a slab. The corresponding slab waveguide
used in Figs. 13(a) and 13(b) has the same thickness of the disk
and a mapped longitudinal wavevector βm = M/R. The first order
dilatational mode in Fig. 12(f) is concentrated at the disk edge and
move inwards as the frequency increases. The radial extent of these
modes can also be predicted by Eq. (19), provided that the mechan-
ical wave velocity is replaced the slab mode velocity—similar to the
WGMs modes, dilatational modes lying near the L1-mode disper-
sion branch will be closer to the disk edge. This general behavior of
modal spatial distribution will be crucial to understand the Brillouin
optomechanical coupling which will be discussed next.

2. Brillouin optomechanical coupling
in a silicon microdisk

In the intramodal backward scattering, the phase-matching
condition requires M = 2mp; therefore, the modes tend to localize
toward the edge. In Fig. 13, we show the calculated optomechanical
coupling, as given by Eq. (11) for both the TE and TM optical modes
shown in Fig. 11. The general behavior of the Brillouin active modes
can be better visualized as the cavity thickness is varied, as shown
in Figs. 13(a) and 13(b); we highlight the mode groups in Figs. 13(c)
and 13(d) following the convention introduced in the previous para-
graph (see Fig. 12). Despite the completely distinct geometry, many
aspects of these coupling maps still resemble those observed in the
silica cylinder waveguide [see Fig. 9(d)]. For instance, we can also
roughly predict the position of the shear-like and longitudinal-like
modes by overlaying the phase-matching relation Ω = 2k0neffV (s , l) to
these maps. Around these two curves, represented by white-dashed

FIG. 13. Optomechanical coupling in a silicon microdisk cavity. Optomechanical coupling rate for (a) TE and (b) TM optical modes as a function of the cavity thickness. In
these log-scale maps, each mechanical mode was attributed a Lorentzian profile with a quality factor of 103 for aesthetic purposes. The dashed white (black) lines correspond
to the expected phase-matching for shear (longitudinal) waves. [(c) and (d)] Optomechanical coupling rate (black bars) between the optical mode and the mechanical even
modes [with respect to z = 0 plane in Fig. 11(a)] generated by the photoelastic g0,pe/2π (red) and moving boundary g0,mb/2π (green) contributions; (c) is for TE-mode, while
(d) is for TM-mode, both for a 250 nm thick silicon disk; only modes with coupling rates g0/2π > 1 kHz are shown. In (c) and (d), the PE contribution is arbitrarily chosen to
be positive.
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(V s) and black-dashed (V l) lines, lie the mode groups with strongest
optomechanical coupling.

Below the shear-line dispersion relation, there is the lowest fre-
quency edge mode [Fig. 13(d)], which can be compared to the fun-
damental axial-radial mode in a cylinder that also becomes a surface
mode at large wavenumbers.75 The dilatational modes [Fig. 12(f)]
appear just above the shear-line, which is consistent with their domi-
nantly transverse (shear) (uz≫ uϕ) components. Toward higher fre-
quencies, the trend observed for the whispering-gallery-like modes
[Fig. 12(e)] follows the longitudinal velocity phase-matching curve,
showed in dashed-black. A sequence of avoided crossings, similar
to the ones observed for the silica rod in Fig. 9(d), is a signature of
the scattering being dominated by mechanical modes with strong
shear-longitudinal hybridization. This sequence of avoided cross-
ings reflects the mechanical dispersion relation where longitudinal
and shear waves couple at free-boundaries of the cavity. The differ-
ences between the TE and TM dispersive properties of Figs. 13(a)
and 13(b) are mostly due to the distinct optical dispersion relation
of these two modes, the TM being steeper at lower thicknesses due
its stronger vertical confinement.

In order to get a more quantitative insight on how the two
optical modes actually couple to the various families of mechani-
cal modes in a disk cavity, we investigate the components of pho-
toelastic and moving boundary perturbations leading to the results
shown in Fig. 13. As expected, due its edge localization, the e-
mode barely couples to the TE or TM optical mode, despite of
being the strongest mode at forward scattering (radial-breathing
mode). The first remarkable feature comes with the dilatational
(d-modes) as we may expect very strong coupling based on their
vertical-breathing profile [Fig. 12(f)]. However, when interacting
either with TE or TM optical modes, they suffer from the com-
plex interplay between photoelastic and moving boundary effects.
In the TE case [Fig. 13(a)], we notice that only the moving bound-
ary effect participates in the overall coupling, whereas in the TM
case [Fig. 13(b)], both effects contribute, but with opposite signs.
Indeed, at a thickness t = 360 nm, the fundamental dilatational mode
d1 suffers from Brillouin self-cancellation (BSC), as indicated in
Fig. 13(b).

Since this kind of behavior can completely suppress Brillouin
scattering in a given structure, it is instructive to look at all the indi-
vidual components of the overlap integrals [Eqs. (13) and (14)] con-
tributing to the net optomechanical coupling. We show in Fig. 14(a)
the dominant strain components of the d2-mode (at 16.93 GHz);
although this is the phase-matching frequency for the TM-mode,
the mode has a similar profile for the TE phase-matching frequency
at 20.54 GHz. This mode has not only a large vertical strain Szz
but also comparable azimuthal Sϕϕ and shear Srϕ components, as
shown in Fig. 14(a). While strain is an important figure, the actual
optomechanical coupling still depends on the dielectric permittiv-
ity overlap with the optical fields. In order to understand how these
components influence the coupling, it is instructive to decompose
the PE coupling into components proportional to the tensor ele-
ments of the permittivity perturbation δεij in Eq. (14), where ij = (rr,
zz, ϕϕ, ϕz, rz, rϕ). We show the relative contribution of each pho-
toelastic coupling component, gij

0,pe/g0 of Eq. (14) in Figs. 14(b1) and
14(b2). For the TE mode, the components with significant contri-
bution are grr

0,pe, grϕ
0,pe. Using the backward propagating field relation

FIG. 14. Dilatational mode (d2) optomechanical coupling. (a) Dominant normalized
strain components for the dilatational mode at 16.94 GHz. (b) Contribution of each
coupling term of the PE overlap integral for the TE (b1) and TM (b2) optical modes
interacting with the dilatational mode at their respective phase-matching frequen-
cies (16.94 and 20.54 for TM and TE, respectively). (c) Spatial distribution of major
PE coupling terms identified in (b1) and (b2) and the total coupling for TE (left) and
TM (right). (d) Contribution of each coupling term of the MB overlap integral for the
TE (d1) and TM (d2) mode; � stands for the boundary normal, ∥rz for the in-plane
tangential, and ∥ϕ for the azimuthal tangential component. (e) Boundary distribu-
tion of the total MB coupling. A simulation file for parts (a)–(e) is hosted on the data
repository.80 Parts (a) and (c) were adapted from Espinel et al., Sci. Rep. 7, 43423
(2017). Copyright 2017 AIP Publishing LLC.

for the backscattered field,101 (Es ,r , Es ,ϕ, Es ,z) = (Ep ,r , −Ep ,ϕ, Ep ,z), we
can write the following expression for the Stokes scattering coupling:

g0,pe ≈ grr
0,pe + grϕ

0,pe ∝ ∫ ∣Ep,r ∣2δε∗rr − E∗p,rEp,ϕδε∗rϕdV ,

where the minus sign multiplying the azimuthal components is
responsible for roughly canceling the photoelastic contribution, as
shown in the spatial profile of the total photoelastic contribution
in Fig. 14(c). Given this photoelastic effect self-cancellation, the
moving boundary term is free to dominate the dilatational mode
response, yielding a net coupling of roughly g0/2π ≈ 55 kHz for the
TE mode. The equivalent waveguide gain obtained using Eq. (12) is
GB/Qm = 1.5 × 10−1 W−1m−1.

It is also instructive to decompose the MB coupling, one in-
plane surface-normal contribution g�0,mb and two surface-tangential

contributions, one in-plane g∥rz
0,mb and one out-of-plane g∥ϕ0,mb involv-

ing only the azimuthal optical fields (Eϕ). The relative moving
boundary coupling components are shown in Figs. 14(d1) and
14(d2). As can be noticed in Fig. 14(d1), the moving boundary
density contribution for the TE mode is essentially given by the
tangential in-plane (∥rz) contributions,

g0,mb ≈ g∥rz
0,mb ∝ −∫ uz ∣Ep,r ∣2δεmbrdr,

where δεmb = εair − εSi is the dielectric permittivity difference
between air and silicon, and uz is the vertical displacement compo-
nent evaluated the upper or lower disk boundaries. For the mechan-
ical modal phase chosen in Fig. 14, g(∥rz)

mb is positive because light
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perceives a lower effective refractive index as the width shrinks, lead-
ing to an increase in the optical frequency. In the TM mode case,
the situation is quite different, and the net photoelastic contribu-
tion is dominated by two components of the same sign, gzz

pe and gϕϕpe .
However, the optical field concentration along the upper and lower
boundaries also leads to a very strong negative moving boundary
component, which compensates the photoelastic contribution. The
physical reason of the negative moving boundary component is the
strong azimuthal field along the boundaries, which has a negative
sign due to the backscattering configuration,

g0,mb ≈ g∥ϕ0,mb ∝ +∫ uz ∣Ep,ϕ∣2δεmbrdr.

This competition results in rather small coupling of only g0/2π
≈ 27 kHz (GB/Qm = 8.6 × 10−2 W−1m−1). The analysis above fur-
ther reinforces that the intricate interplay between all the photoelas-
tic components may create unexpected cancellation effects, which
could ultimately prevent the optomechanical interaction.

Finally, the mode branches with highest optomechanical cou-
pling are the whispering-gallery modes (w-modes), peaking g0/2π
≈ 66 kHz at 24.5 GHz (GB/Qm = 3.4 × 10−1 W−1m−1) for the TM
optical mode. Although the low transverse order w-modes lying
close to the shear-velocity curve in Fig. 12(b) have only ur , uϕ dis-
placement components, at higher frequencies—above the slab Lamb
mode (L1) dispersion curve—they exhibit a significant vertical dis-
placement component (uz). Nevertheless, their ur , uϕ components
can still be quantitatively compared to the true whispering gallery
modes of an infinite cylinder, as shown in Fig. 15(a). The almost
perfect agreement between the Sϕϕ strain in the two geometries
allows us to explore the analytical expression for the modal dis-
placement and understand how an oscillatory strain field can lead
to such high optomechanical coupling. The azimuthal strain is given
by Sϕϕ = ur/r − iMuϕ/r, by breaking up ur , uϕ into their shear and
longitudinal components u(r,ϕ) = u(s)

(r,ϕ) + u(l)
(r,ϕ), we can also decom-

pose the strain in these components,76,166,167 Sϕϕ = S(s)ϕϕ + S(l)ϕϕ , where

S(s)ϕϕ ∝ (JM(ksr), J′M(ksr)) and S(l)ϕϕ ∝ (JM(klr), J′M(klr)). The purely
shear component, represented by the blue-dashed line in Fig. 15(b),
extends deep into the cylinder, ws

r ≈ 2750 nm [as predicted by
Eq. (19)], but its fast radial oscillation (1/ks ≪ wopt

r ) averages out
its coupling contribution. The purely longitudinal component, rep-
resented by the green-dashed line in Fig. 15(b), does not oscillate
significantly and has a shorter penetration wl

r ≈ 610 nm predicted
by Eq. (19). This is the physical origin of the “bump” seen in the
azimuthal strain near the cavity edge, which can also be seen in the
strain density maps of Fig. 15(a). This reasoning is confirmed in
the relative contribution to the photoelastic optomechanical cou-
pling shown in Fig. 15(c), which confirms that gpe ≈ gϕϕpe for the
w-modes. The role of the uz displacement component was actually to
slightly reduce the photoelastic coupling, through negative gϕz

pe , gzz
pe ,

as shown in Fig. 15(c). As for the moving boundary relative contri-
bution, shown in Fig. 15(e), although the longitudinal wave bump
contributes to give a tiny tangential in-plane g∥ϕmb coupling, the small
transverse displacement [uz ≪ (ur , uϕ)] of these modes weakens the
MB effect role. A similar discussion applies to the coupling with TE
optical modes shown in Figs. 13(a) and 13(c), with the exception of
the higher frequencies (around 33.8 GHz) due to phase-matching,

FIG. 15. Whispering gallery mode (w16) optomechanical coupling. (a) Representa-
tive normalized strain components for the whispering-gallery mechanical mode at
24.51 GHz. (b) Comparison between microdisk (solid-black) and infinite cylinder
(solid-red) azimuthal strain profiles, and the dashed-blue (dashed-green) repre-
sents the infinite cylinder shear and longitudinal components; the green and blue
arrows are predictions of Eq. (19) for the longitudinal (wl

r ≈ 610 nm) and shear
components (ws

r ≈= 2750 nm), respectively. (c) Contribution of each coupling
term of the PE overlap integral for the TM optical mode. (d) Spatial distribution of
major PE coupling terms identified in (b) and the total coupling. (e) Contribution of
each coupling term of the MB overlap integral for the TM mode; � stands for the
boundary normal, ∥rz for the in-plane tangential, and ∥ϕ for the azimuthal tangen-
tial component. (f) Boundary distribution of the total and in-plane tangential ∥rz MB
coupling. A simulation file for parts (a)–(f) is hosted on the data repository.80 Part
(a) was adapted from Espinel et al., Sci. Rep. 7, 43423 (2017). Copyright 2017
AIP Publishing LLC.

and dominance of the grr
pe, grϕ

pe photoelastic components; in addition,
the moving boundary is slightly enhanced by the tangential in-plane
g∥rz

mb contribution caused by the dominant radial optical field. Overall,
the dominance of the azimuthal displacement contribution for the
photoelastic effect in cavity w-modes is analogous to what has been
discussed in a silica glass waveguide: the photoelastic effect for the
mechanical modes lying close the longitudinal wave phase-matching
curve (Ω = 2k0neffV l) is dominated by the out-of-plane displace-
ment component—typical of longitudinal (pressurelike) mechanical
modes.

C. Backward Brillouin scattering in other
microcavities

Although we focused our microcavity discussion on a silicon
microdisk device, we highlighted the structural similarities between
the microcavity scattering and the simple silica rod of Sec. III. To
further emphasize that the general structure of Brillouin scattering
is shared among a variety of structures, we briefly discuss in this
section two other popular suspended whispering gallery microcav-
ities, a silica microdisk168 and a silica microtoroid. The optome-
chanical coupling evolution, with respect to the disk thickness or
toroid minor diameter, is shown in Fig. 16. Both resemble many
aspects already discussed in backward scattering within the silica
rod waveguide (Sec. III) and the silicon microdisk (Sec. IV). Lower
frequency branches appear close to the shear-velocity dispersion
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FIG. 16. Optomechanical coupling in a silica microdisk and microtoroid cavities. (a1) Silica microdisk schematics. (a2) (From top to bottom) TM whispering gallery optical
mode, whispering gallery mechanical mode, and dilatational mechanical modes that have their optomechanical coupling rate shown in (c). (d1) Silica microtoroid schematics.
(d2) (From top to bottom) TM whispering gallery optical mode and higher order axial-radial mechanical modes with the largest optomechanical coupling rate indicated in (f1),
the line-cut plots along the toroid equator show the electric-field |Ez | component and uϕ displacement. Optomechanical coupling rate for TM mode of (b) a silica microdisk and
(e) a microtoroid as a function of the cavity thickness, in these log-scale maps each mechanical mode was attributed a Lorentzian profile with a quality factor of 0.5 × 103;
the gray-area in (e) is a spectral region not simulated due to large number of mechanical modes. [(c) and (f)] Optomechanical coupling rate (black bars) between the optical
mode and the mechanical even modes [respect to z = 0 plane in Fig. 11(a)] generated by the photoelastic g0,pe/2π (red) and moving boundary g0,mb/2π (green) contributions;
(c) is for silica microdisk and (f) for the microtoroid; only modes with coupling rates g0/2π > 100 Hz are shown and g0,pe is arbitrarily chosen to be positive. The open and
solid circles in parts [(c), (f1), and (f2)] mark the corresponding mode in parts [(a2) and (d2)]. A simulation file for parts [(b)–(e)] is hosted on the data repository.80

relation, which tend to concentrate around the dielectric edge, and
a higher frequency branch tends to concentrate around the longitu-
dinal velocity dispersion. While the former exhibit a reasonable—or
even dominant—contribution from the moving boundary effect, the
latter couples essentially due to photoelasticity.

In the silica microdisk, shown in Figs. 16(a1), 16(a2), 16(b), and
16(c), the coupling dependence on the thickness is remarkably sim-
ilar to the silicon microdisk case of Fig. 13. In the silica microtoroid,
shown in Figs. 16(d1), 16(d2), 16(e), 16(f1), and 16(f2), we restricted
to analyze minor diameters larger than 2 μm, closer to experimen-
tally demonstrated devices.77 We verified that the mechanical modes
responsible for the scattering peaks around 11 GHz originate from
higher order axial-radial modes (similar to those in the silica rod)
that were shifted toward the disk edge due their high orbital angular
momentum (M). We show in Fig. 16(d2) the mechanical mode pro-
file with largest coupling for a real toroid and an idealized one, where
only the circular toroidal region was simulated. Not only there is a
remarkable agreement between the two profiles but also the actual
coupling spectra, shown in Figs. 16(f1) and 16(f2), are very simi-
lar. Yet, the real toroid exhibits a slightly smaller coupling as the
mechanical mode hybridizes with displacement along the support-
ing disk that increases the mode effective mass. As shown in the

line-cut plots of Fig. 16(d2), similar to the silicon disk whisper-
ing gallery modes [Fig. 15(a)], on top of the oscillatory azimuthal
displacement, the dominant mechanical mode has a slowly vary-
ing component due to the longitudinal velocity modal contribution
superposed with an oscillatory shear-component. Like in the silicon
w-modes of Fig. 15, it is the slowly varying longitudinal compo-
nent that ensures a net optomechanical coupling. For the sake of
shorter computational times, the minor diameter dependence of the
optomechanical coupling, shown in Fig. 16(e), was calculated using
the idealized toroid. The minor diameter and its range, calculated in
Fig. 16(e), are much larger than the microdisk thickness, which is
the major reason why it differs from the microdisk coupling map of
Fig. 16(b). The larger toroid cross section (shorter frequency interval
between mechanical modes) causes the sequence of avoided cross-
ings to appear more frequently in the toroid case. We emphasize
that the experimental observation of backward Brillouin scatter-
ing within a microtoroid has been recently reported,77 although the
mechanical modes shown here were not identified.

The remarkable similarities of the Brillouin backscattering
between the silicon microdisk and microtoroid cavities confirm our
initial assertion of the general properties of Brillouin optomechani-
cal coupling in axisymmetric cavities.
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D. Bullseye cavity

In forward intramode Brillouin scattering on axisymmetric
cavities, the phase match condition is satisfied for M = 0 [see Eq. (2)]
and leads to a mechanical mode that extends over the entire disk
structure, as predicted by Eq. (19). Therefore, initial experiments163

used the natural confinement of tiny posts on circular and disk-
shaped cavities to prevent coupling of the mechanical modes to the
necessary bulky and lossy substrates. Nonetheless, optomechanical
experiments using many types and shapes of optical and mechan-
ical cavities have been carried out in a large span of applications,
from high precision measurements of acceleration59 and displace-
ment89 to measurement and generation of nonclassical mechanical
states.62,63,65 Most of these experiments benefit from the simulta-
neous control of the optical and mechanical fields. In what fol-
lows, we will discuss one type of optomechanical cavity, the bulls-
eye optomechanical cavity,78 which confines optical and mechanical
modes through distinct physical mechanisms and allows for inde-
pendent control of the mechanical and optical properties. As in
Sec. IV A, the radial confinement of the optical mode can be
understood through WGMs, while the mechanical confinement is
achieved by defining an elastic grating along the radial direction in
order to create a phononic quasibandgap.

Due to these two edge confinement mechanisms, the bullseye
resonator can be understood by analyzing a floating ring structure

that is analogous to a bent rectangular waveguide in many aspects.
Due to the large refractive index of silicon at 1550 nm, the floating
ring structure can have lateral and thickness dimensions of a few
hundred nanometers. Like in the silica nanorod, the strong con-
finement for the optical and elastic waves also increases the pho-
toelastic and moving boundary perturbations. Figure 17(a) shows
the dispersion relation for all the mechanical modes that satisfies
the intramodal forward scattering (M = 0) phase-matching condi-
tion of Eq. (2). For each wring, we calculate all the mechanical modes
that couple to the TE optical mode due to the PE and MB pertur-
bations using Eq. (11). The corresponding spectra are normalized
such that its peak height is proportional to the total optomechanical
coupling rate. Clearly only one mode family, the breathing mode, is
dominant in this case. The breathing mode frequency can be esti-
mated assuming that the mechanical wave is confined along the ring
width with the velocity of longitudinal waves V l in bulk silicon. Mul-
tiple orders of breathing mode are given by Ωp = pV l/(2wring), where
V l = 9660 m/s and p is an integer representing the mode order. The
dashed white lines in Fig. 17(a) represent these estimated mechani-
cal frequency dispersion curves as a function of the ring width for
each mode order p. The correct design of the ring and mechan-
ical mode order can be used to either enhance the optomechan-
ical coupling or for self-canceling it. Both situations are analyzed
in Figs. 17(b)–17(k). The enhancement of the optomechanical cou-
pling rate between the first order mechanical breathing mode and

FIG. 17. Optomechanical interaction in a bullseye cavity. In all simulations, the thickness of the silicon layer is 250 nm and the radius of the floating ring or bullseye cavity
is 10 μm. (a) FEM simulation of the optomechanical coupling rate for a floating ring structure as a function of its width. The dashed white lines are the calculated frequency
for multiple orders of a Fabry-Perot described in the text. [(b) and (c)] Optomechanical coupling rates from the PE (red), MB (blue), and total (green) for the first and third
order breathing modes as a function of wring. (d)–(g): First order breathing mode for wring = 500 nm. [(h)–(k)] Third order breathing mode for wring = 1385 nm. [(d) and (h)]
The optical mode. [(e) and (i)] Mechanical displacement field for the first and third breathing modes at 8.5 GHz and 9.4 GHz frequencies, respectively. The most relevant
contributions for the photoelastic [(f) and (j)] and moving boundary [(g) and (k)] optomechanical coupling contributions are also shown. (l) FEM simulations for the mechanical
dispersion relation of a bullseye disk (red and blue shades) as a function of the periodicity for wring = 500 nm (red shades around 9 GHz) and wring = 1000 nm (blue shades
around 5 GHz). Darker colors refer to larger total optomechanical coupling rates. The gray tone shades are proportional to the mechanical density of states (DOS) of the
corresponding linear crystal, where darker regions are related to higher DOS within the mechanical grating. (m) (From top to bottom) Whispering gallery type optical TE
mode, closeup of the optical mode, first order breathing mode, and dominant component of the strain (Srr ) for the optomechanical coupling rate. All colored FEM simulations
are normalized according to the color bars. In the maps of parts (a) and (l), each mechanical mode was attributed a Lorentzian profile with a quality factor of 103. A simulation
file for part (l) is hosted on the data repository.80 Part (m) reprinted with permission from Santos et al., Opt. Express 25(2), 508–529 (2017). Copyright 2017 Optical Society
of America.
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the TE optical mode is due to the fact that both PE and MB contri-
butions have the same sign for wring smaller than 750 nm. The large
optomechanical coupling rate is achieved in this case since the
largest strain component (Srr) has almost unit overlap with the
optical mode.

On the other hand, self-cancellation is achieved for the coupling
between the third order breathing mode and the TE mode around
wring ≈ 1380 nm, which can be noticed in Fig. 17(a). In this case,
like in the silica rod, there is a competition between the photoe-
lastic term (related once again with Srr) and the moving boundary
term, as shown in Figs. 17(j) and 17(k). The boundary and vol-
ume integrands have exactly opposite phase for this geometry, thus
causing the self-cancellation effect. Despite being a very intuitive
geometry, the floating ring structure is not feasible. In addition,
as we already mentioned, a simple disk is not sufficient to confine
the elastic waves towards the disk edge in the intramodal forward
scattering regime. Santos et al.78 discussed in detail a strategy to
confine the mechanical waves toward the disk edge using a bulls-
eye type structure. This strategy is very successful and is represented
in Fig. 17(l), where both the dispersion relation of the bullseye disk
mechanical modes (red and blue shades) and the mechanical den-
sity of states (MDOS, gray-shaded) of a 1D-grating are overlaid.
Darker gray regions are to be interpreted as higher MDOS within
the mechanical grating. The red shaded dispersion relation is for
wring = 500 nm, while the blue shaded dispersion relations are for
a wring = 1000 nm. In both cases, the darker colors represent larger
optomechanical coupling (white means zero optomechanical cou-
pling). In both cases, we notice that the existence of the quasi-
bandgap (mechanical frequency range with very high reflectivity)
not only confines the mechanical modes toward the disk edge but,
by doing so, also increases the optomechanical coupling due to the
larger overlap between the δεrr and the optical mode. In Fig. 17(m),
we also show the spatial profiles of the major photoelastic and mov-
ing boundary components of the radial breathinglike mechanical
mode in the full bullseye structure. We notice that despite of the
symmetry break in the z-direction (the grating struts are along the
bottom part of the disk), which couples the radial ur and vertical uz
displacement, there is no noticeable difference regarding the origin
of the optomechanical coupling between the bullseye disk and the
floating ring. These analyses could be easily adapted for other crys-
talline and compound materials that could be used to form bullseye
cavities.

V. PERSPECTIVES AND CONCLUSIONS
Despite remarkable progress in formalizing and unifying the

theoretical basis underlying the Brillouin optomechanical interac-
tion in nanophotonics, fundamental and technical aspects are yet
to be fully developed, with many opportunities for novel research
in this field. In the context of this tutorial, which focused on the
two main fundamental interaction mechanisms and the ability to
design structures to control both mechanical and optical waves
at the nanoscale, there are several new developments still in their
early days. In analogy to many unique properties obtained in opti-
cal metamaterials, as an example, mechanical metamaterials may
offer opportunities to achieve novel properties not available in con-
stituent bulk materials.169–171 For example, mechanical metamate-
rials with photoelasticity enhanced beyond that of its constituent

materials or metamaterials with complete suppression of photoe-
lasticity. As in optics, mechanical metamaterials may also offer
the ability to further design the dispersion relation of mechanical
waves.

Anisotropy is also a topic that we barely touched in this tutorial;
however, recent progress in using materials such as LiNBO3,172–175

AlN,176–178 diamond,37,179,180 GaAs,181 and ionic crystals (e.g., CaF2)
for optomechanics shows that new design and fundamental chal-
lenges are open. Optical anisotropy could significantly modify the
photoelastic effect146 as well as backward effects (forces and torques)
accompanying it. Within optical cavities, optical or mechani-
cal anisotropy adds significant constraints in the optomechanical
design, for instance, mechanical anisotropy in silicon hazes other-
wise simple designs.78

As a consequence of a lower crystal symmetry, anisotropy may
also be accompanied by other physical effects, such as electro-optic
and piezoelectric effects, and enable full electro-optical-mechanical
interaction,90,93,182–184 which shares many of the physical similarities
of the discussed devices, displaying both electrostrictive and radi-
ation pressure contributions. Incorporating other nonlinear effects
present in semiconductor materials, such as free-carrier absorption,
photothermal and photorefractive effects have been pursued theo-
retically;185,186 however their possible mitigation or benefit187,188 for
the Brillouin optomechanical interaction is still not fully developed.
Despite the large knowledge-base of this field due to technological
relevance of electro-optic and acousto-optic modulators, developing
effective devices at the subwavelength scale to enable large Brillouin
coupling is still underway.

Beyond just the material itself, taking full advantage of peri-
odic structures such as photonic and phononic crystals waveg-
uides and cavities is another area of intense development, both
experimentally and theoretically.45,46,56,57,66,102,103,189 One key aspect
of these structures is that they may lead to full confinement of
both optical and mechanical defect modes as well as offer mech-
anisms to mitigate dissipation. In particular, mechanical dissipa-
tion190 is still hindered by the large number of mechanical modes
and their inherent coupling caused by geometrical imperfections
or residual stress in fabricated structures. Along the same lines,
opportunities for designing defect-robust structures—such as by
exploring mechanical topological insulators—is an exciting new
area.191–193

A whole new quantum horizon for Brillouin optomechanics
may arise when feasible device designs and improvement on micro-
fabrication processes enable experimental demonstrations within
the strong couple interaction limit, at which light and sound
hybridize to form a coupled entity,90 with initial works focus-
ing on reducing optical194 and mechanical dissipation183,195–197 or
enhancement of the effective coupling strength.87,194,198 Finally,
multimode Brillouin optomechanical interaction64,199 can lead to
exquisite results where interference between multiple mechanical
modes coupled to an optical mode can mitigate extrinsic
loss mechanisms,200 extending optical delay through electro-
magnetically induced transparency201 and creating highly coher-
ent mechanical modes.202 In its simpler form, where distinct
optical modes couples a single mechanical mode,203 cooling
and amplification in continuous media204 can be explored
and mediate coupling between distinct optical and mechanical
modes.205
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Although we described the Brillouin interaction using energy
arguments—instead of force densities—it is worth emphasizing
how such force densities depend on the electromagnetic stress-
tensor and momentum density, and their impact in the Brillouin
optomechanical coupling described in this tutorial. These choices
have been at the core of the century-old Abraham-Minkowski con-
troversy,206–208 and while major progress has been made on this con-
troversy,209–211 some aspects of the debate are still alive212–214 and it
was not the goal of this tutorial to resolve them. In the context of cav-
ity optomechanics, for example, there are several articles that derive
the optical force, which acts upon the cavity mechanical degree of
freedom, following the convention51,215,216 of photon momentum
given by h̵k (k being the wavevector within the dielectric defining
the optical cavity). Although not explicitly mentioned in most arti-
cles, this convention is consistent with the Minkowski approach217

and ensures a match between the force calculated using a momen-
tum picture217 and the more widespread energy picture, which uses
a virtual-work argument to derive the optical force for an adia-
batic (slowly varying) mechanical degree of freedom.217–221 Those
descriptions and their success in predicting experimental results
(such as optical spring effect and cooling89) may suggest that the
optomechanics community has taken the Minkowski side. However,
it is worth mentioning Nelson’s perspective222 where he argues that
although the light momentum is partially carried by the vacuum and
material response fields, it is the sum of both—coined by him as wave
momentum—that is given by h̵k per photon in the quantum regime.
It is also mentioned that apart from material dispersion, the wave
momentum represents the Minkowski one, a perspective that has
been previously pointed out by Van Laer.223 Finally, from a macro-
scopic electrodynamics perspective, the difference between the force
densities calculated using either Abraham or Minkowski formalisms
should differ by a time-oscillatory term208,224,225 (known as the Abra-
ham force) that averages out with optical monochromatic fields. It is
precisely this term that explicitly appears in Wolff’s coupled-mode
theory derivation96 as the “moving polarization” effect. Similar to
the history of the moving boundary perturbation, first proposed
by Johnson,100 and its connection to radiation pressure boundary
forces, the discovery of the “moving polarization” term as an addi-
tional force strengthens the idea that approaching the problem from
different perspectives may grasp us into new physics; however, due
to its scaling as the ratio of mechanical to optical frequencies,96 it has
yet to find an experiment that could probe it.

In summary, we discussed in detail how the photoelastic and
moving boundary effects interplay to enhance or suppress the Bril-
louin optomechanical interaction in nanophotonic structures. Its
general structure in both forward and backward scattering config-
urations was discussed based on pedagogical case studies. Albeit
emphasis was given to specific examples, we highlighted the under-
lying general structure of the Brillouin coupling. This investigation
also revealed that the Brillouin self-cancellation effect is present
in many structures in both forward and backward interaction and
should be carefully considered in nanophotonic device design. Also
our numerical simulations identified the mechanical modes respon-
sible for backward scattering in a silica microtoroid. By providing
the simulation files used in preparing this tutorial80—developed in a
widely used commercial solver—we hope to encourage and shorten
the path for students and researchers initiating their investigation in
this exciting field.
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APPENDIX A: COUPLED MODE EQUATIONS ANSATZ
AND RELATION BETWEEN GAIN EXPRESSIONS

The expression for the waveguide Brillouin gain in Eq. (9) was
derived by Wolff et al. in Ref. 96 using the coupled-wave theory for-
malism. Their ansatz for the waveguide slowly varying fields is such
that the slowly varying envelopes are dimensionless and the opti-
cal and mechanical modal fields carry on their respective SI units.
In contrast to Ref. 96, we choose to write the waveguide coupled-
wave equations in Eq. (7) following the normalization adopted in
Refs. 69 and 90 and the cavity equations in Eq. (10) following their
usual normalization;79,89,90 these choices not only keep the optical
and mechanical equations symmetric but they also provide a con-
nection between the waveguide and cavity couplings. However, if
one wants to keep the actual physical dimensions of the optical and
mechanical fields, which is the case when using a commercial mode
solver such as COMSOL Multiphysics, the choice in Ref. 96 is very
convenient. In Refs. 96 and 115, the Brillouin gain [W−1m−1] is
written as

GWolff
B = 2ωpΩm∣QSBS∣2

PsPpPmαm

α2
m

α2
m + δβ2 , (A1)

where QSBS is the total SBS coupling coefficient ([QSBS] = J m−1)
and can be interpreted as work per unit length;96 αm = γm/(2υm) is
the mechanical displacement attenuation ([αm] = m−1) (the factor
2 is due to the connection between displacement and energy dis-
sipation); δβ = βm − (βs − βp) is the wavevector mismatch; Pp ,s ,m
represents the power carried in the pump, Stokes, or mechanical
modes. QSBS in Eq. (A1) is calculated from the field profiles [see
Eqs. (33) and (41) in Ref. 96] and is subject to whatever normal-
izations are carried out in the mode solver of choice; for instance,
in COMSOL, the fields are normalized either through the finite-
element mass matrix or by their norm maximum. Since we wanted
to compare the coupling integrals among different geometries in
this tutorial, we found instructive to incorporate the normalizing
powers appearing in the denominator of Eq. (A1) into the cou-
pling expression. Furthermore, since the mechanical Poynting theo-
rem149 ensures the relation Pm = Emvm between the power, the linear
energy density (Em), and the group velocity (vm) of the mechanical
wave,

GWolff
B = 4ωpQm

(γm/2)2

(γm/2)2 + (Δm)2 (
∣QSBS∣2
PsPpEm

), (A2)
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where we converted the spatial attenuation and wavevector mis-
match to the dissipation rate and frequency detuning by employing
αm = γm/(2υm) and Δm = Ω−Ωm = υmδβ, together with γm = Ωm/Qm.
The rightmost quantity in parentheses in Eq. (A2) is independent
of normalization and could be directly used to compare different
structures. However, because the mechanical energy scales as the fre-
quency squared (Em = 2Ω2

m ∫ ρ∣um∣2dA), such a quantity would favor
modes with low-frequency and hinder the actual spatial optome-
chanical overlap that is solely dependent on the mode field profiles.
To remove this frequency dependence, we introduce the effective
mass linear density m̄eff = ∫ ρ∣um∣2/max(∣um∣2)dA so that

GWolff
B = Qm

2ωpL(Ω)
m̄effΩ2

m
( ∣QSBS∣2

PsPp max(∣um∣2)
), (A3)

where the Lorentzian lineshape defined in Eq. (8) was introduced.
Given that the optical power is calculated from the modal fields
as Pi = 2R(∫Ei × H∗i ⋅ zdA) = (Nwg

i )
2, where Nwg

i is defined in
Eq. (13), it shows the equivalence between Eq. (9) and the expres-
sions employed in Refs. 96, 115, 125, and 226. Therefore, the surface
force densities in Eq. (13) and volume force densities in Eq. (14) are
related to integrands in QSBS = ∫ qmb

SBSdl + ∫ qpe
SBSdA as

f (wg)
(mb, pe) =

q(mb, pe)
SBS

max(∣um∣)Nwg
p Nwg

s
. (A4)

Finally, it important to mention that the finite-element solver
employed throughout this tutorial adopts the exp(−iβz + iωt) ansatz
in the RF Electromagnetic Waves and Structural Mechanics modules.
This is very important as the sign of all the expressions involving the
z-derivative of mechanical fields, e.g., strain tensor, depend on this
convention. Therefore, the modal expansion leading to Eq. (A1) and
consistent with COMSOL’s ansatz is given by

Fwg(r, t) = ã(z)F(rt) exp(−iβz + iωt) + c.c., (A5a)
Fcav(r, t) = a(t)F(rt) exp(−imϕ + iωt) + c.c., (A5b)

Uwg(r, t) = b̃(z)u(rt) exp(−iβmz + Ωt) + c.c., (A5c)
Ucav(r, t) = b(t)u(rt) exp(−iMϕ + Ωt) + c.c., (A5d)

where F denotes either an electric or magnetic field and F(rt)
denotes their modal vector fields depending only on the transverse
coordinates; U denotes the mechanical displacement field, while
u(rt) is the modal vector field; a(z) and a(t) [b(z) and b(t)] are the
dimensionless slowly varying optical (mechanical) field amplitudes.
Since COMSOL preserves the SI units of the modal fields, the nor-
malization employed in the discussion of the coupled-mode equa-
tions [Eq. (7)] is distinct from Eq. (A5). The advantage of COMSOL
normalization is that one can keep track of the dimensions of each
quantity in the gain expressions [Eqs. (9), (11), (13), and (14)].

APPENDIX B: MATERIAL PROPERTIES
In our calculations, the material properties shown in Table II

were used.227,228 Despite silicon being anisotropic and there are dif-
ferent directions, the purpose of this tutorial was worth considering
an isotropic approximation. This particular choice of parameters
does not affect the general behavior of the Brillouin optomechanical
interaction discussed here. One may expect, however, that genuine

TABLE II. Material properties used in the simulations.

Physical property Si SiO2 As2S3

Refractive index n 3.5 1.45 2.37
Density ρ (kg/m3) 2329 2203 3210
Young modulus Y (GPa) 170 73.1 16.2
Poisson ratio νP 0.28 0.17 0.285
Photoelastic tensor p11 −0.09 0.121 0.25
Photoelastic tensor p12 0.017 0.27 0.24
Photoelastic tensor p44 −0.0535 −0.0745 0.005

cylindrical symmetry breaks down in this material and modal pat-
terns should be affected, which does not prevent the observation of
Brillouin optomechanical coupling in such structures.78 Nonethe-
less, in order to provide the reader with an example of the use of
anisotropic material and to better compare our simulations with
Refs. 71 and 125, we simulate the under-etched waveguide shown in
Fig. 1(e) aligned along a ⟨110⟩ axis. In this case, the elasticity (c11, c12,
c44) = (166, 64, 79) GPa and photoelasticity (p11, p12, p44) = (−0.09,
0.017, −0.051) matrices were rotated by π/4 around the crystal z-axis
(100 direction).149

The photoelastic contribution to the Brillouin gain has a strong
dependence on the properties of several materials. In order to com-
pare the Brillouin gain performance of different materials using
Eq. (9), it is worth making a few approximations. We assume (i)
intramodal scattering so Nwg

p = Nwg
s , (ii) the mechanical mode is

uniform and perfectly confined to a spatial region of area Am such
that

m̄eff = ∫ ρ∣um∣2/max ∣um∣2dA ≈ ρAm. (B1)

Within these approximations, the overlap integrands in Eq. (14) can
also be simplified and written as

∫ f wg
pe dA ≈ −n4p̄S̃

c
∫n ∣Ep∣2dA

2 ∫∞ n∣Ep∣2dA
, (B2)

where p̄ is an effective photoelastic constant associated with the
average normalized strain field S̃ = S/max(∣um∣), and the relation
(Nwg

p )2 = 2R(∫Ep × H∗p ⋅ zdA) ≈ 2cnε0∣Ep∣2 was used, implicitly
assuming a plane-wave-like optical mode. The numerator integral in
Eq. (B2) is carried out only in the “guiding” region where the optical
mode is confined. Further assuming that the optical field is uniform
and distributed in the guiding region of refractive index n, Eq. (B2)
simplifies to ∫ f wg

pe dA ≈ −n3p̄S̃/(2c). Using these approximations,
Eq. (9) can be written as

GB(Ω) ≈ Qm
ωpn6p̄2S̃2

2c2ρAmΩ2
m

L(Ω). (B3)

From Eq. (B3), one may derive the usual bulk backward Brillouin
gain expression120 by assuming a purely longitudinal normalized
mechanical strain, S̃2 = β2

m, p̄ = p12 Ωm = βmVl (V l is longitudinal
velocity), and Qm = βmV l/γm. With the backward phase-matching
condition βm = 2ωpn/c,

GB(Ω) ≈
1

Am

⎛
⎝
ω2

pn7p2
12

c3VlρΓm

⎞
⎠
L(Ω). (B4)
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The quantity in parentheses is often referred to as peak Brillouin gain
gB [m/W].120 Note that some authors prefer to eliminate the longitu-
dinal velocity [V l = Ωmc/(2ωpn)], which results in a n8 dependence
of the peak Brillouin gain. By isolating the material properties in gB,
we find that it scales as

(c3/ω2
p)gB = (

n7p2
12

VlρΓm
),

demonstrating that materials with large refractive indices and pho-
toelastic constants, and low mechanical velocity and dissipation are
desirable in determining the strength of the Brillouin interaction.
Given such scaling, it is not surprising that in the examples of Fig. 1,
silicon and As2S3 display the largest gains. Silicon, despite the small
photoelastic constants, has the largest refractive index, while As2S3
has a reasonable refractive index and a large photoelastic constant
and low mechanical velocities. Mechanical dissipation is another
important aspect revealed by gB; this is an advantage of crystalline
materials, such as silicon, which may have very low mechanical
dissipation at low temperatures.195,229
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