2,459 research outputs found

    Membrana pupilar persistente

    Get PDF
    La persistencia de la membrana pupilar es una de las alteraciones congénitas oculares más frecuente en los pequeños animales. En este artículo se hace una revisión de las manifestaciones clínicas más frecuentes de esta patología.The persistence of the pupillary membrane is one of the most common congenital ocular anomalies in small animals. In this article a review of the principal clinical signs of this alteration is made

    Influence of charging conditions on simulated temperature-programmed desorption for hydrogen in metals

    Get PDF
    Failures attributed to hydrogen embrittlement are a major concern for metals so a better understanding of damage micro-mechanisms and hydrogen diffusion within the metal is needed. Local concentrations depend on transport phenomena including trapping effects, which are usually characterised by a temperature-programmed desorption method often referred to as Thermal Desorption Analysis (TDA). When the hydrogen is released from the specimen during the programmed heating, some desorption peaks are observed that are commonly related to detrapping energies by means of an analytical procedure. The limitations of this approach are revisited here and gaseous hydrogen charging at high temperatures is simulated. This popular procedure enables attaining high concentrations due to the higher solubility of hydrogen at high temperatures. However, the segregation behaviour of hydrogen into traps depends on charging time and temperature. This process and the subsequent cooling alter hydrogen distribution are numerically modelled; it is found that TDA spectra are strongly affected by the charging temperature and the charging time, both for weak and strong traps. However, the influence of ageing time at room temperature after cooling and before desorption is only appreciable for weak traps

    Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron

    Get PDF
    The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps

    Cold Isostatic Pressing to Improve the Mechanical Performance of Additively Manufactured Metallic Components.

    Get PDF
    Additive manufacturing is becoming a technique with great prospects for the production of components with new designs or shapes that are difficult to obtain by conventional manufacturing methods. One of the most promising techniques for printing metallic components is binder jetting, due to its time efficiency and its ability to generate complex parts. In this process, a liquid binding agent is selectively deposited to adhere the powder particles of the printing material. Once the metallic piece is generated, it undergoes a subsequent process of curing and sintering to increase its density (hot isostatic pressing). In this work, we propose subjecting the manufactured component to an additional post-processing treatment involving the application of a high hydrostatic pressure (5000 bar) at room temperature. This post-processing technique, so-called cold isostatic pressing (CIP), is shown to increase the yield load and the maximum carrying capacity of an additively manufactured AISI 316L stainless steel. The mechanical properties, with and without CIP processing, are estimated by means of the small punch test, a suitable experimental technique to assess the mechanical response of small samples. In addition, we investigate the porosity and microstructure of the material according to the orientations of layer deposition during the manufacturing process. Our observations reveal a homogeneous distribution independent of these orientations, evidencing thus an isotropic behaviour of the material

    Pre-notched dog bone small punch specimens for the estimation of fracture properties

    Get PDF
    In recent years, the pre-notched or pre-cracked small punch test (P-SPT) has been successfully used to estimate the fracture properties of metallic materials for cases in which there is not sufficient material to identify these properties from standard tests, such as CT or SENB specimens. The P-SPT basically consists of deforming a pre-notched miniature specimen, whose edges are firmly gripped by a die, using a high strength punch. The novelty of this paper lies in the estimation of fracture properties using dog-bone-shaped specimens with different confinement levels. With these specimens, three confinement variations have been studied. The results obtained enable the establishment of a variation of fracture properties depending on the level of confinement of each miniature specimen and selection of the most appropriate confinement for this goal

    Simulation of hydrogen permeation through pure iron for trapping and surface phenomena characterisation

    Get PDF
    There is a need for numerical models capable of predicting local accumulation of hydrogen near stress concentrators and crack tips to prevent and mitigate hydrogen assisted fracture in steels. The experimental characterisation of trapping parameters in metals, which is required for an accurate simulation of hydrogen transport, is usually performed through the electropermeation test. In order to study grain size influence and grain boundary trapping during permeation, two modelling approaches are explored; a 1D Finite Element model including trap density and binding energy as input parameters and a polycrystalline model based on the assignment of a lower diffusivity and solubility to the grain boundaries. Samples of pure iron after two different heat treatments - 950C for 40 minutes and 1100C for 5 minutes - are tested applying three consecutive rising permeation steps and three decaying steps. Experimental results show that the finer grain microstructure promotes a diffusion delay due to grain boundary trapping. The usual methodology for the determination of trap densities and binding energies is revisited in which the limiting diluted and saturated cases are considered. To this purpose, apparent diffusivities are fitted including also the influence of boundary conditions and comparing results provided by the constant concentration with the constant flux assumption. Grain boundaries are characterised for pure iron with a binding energy between 37.8 and 39.9 kJ/mol and a low trap density but it is numerically demonstrated that saturated or diluted assumptions are not always verified, and a univocal determination of trapping parameters requires a broader range of charging conditions for permeation. The relationship between surface parameters, i.e. charging current, recombination current and surface concentrations, is also studied

    Generalized (\kappa,\mu)-space forms

    Full text link
    Generalized (\kappa ,\mu)-space forms are introduced and studied. We examine in depth the contact metric case and present examples for all possible dimensions. We also analyse the trans-Sasakian case.Comment: 20 pages, several changes have been done in this versio

    Notch Fracture predictions using the Phase Field method for Ti-6Al-4V produced by Selective Laser Melting after different post-processing conditions

    Full text link
    Ti-6Al-4V is a titanium alloy with excellent properties for lightweight applications and its production through Additive Manufacturing processes is attractive for different industrial sectors. In this work, the influence of mechanical properties on the notch fracture resistance of Ti-6Al-4V produced by Selective Laser Melting is numerically investigated. Literature data is used to inform material behaviour. The as-built brittle behaviour is compared to the enhanced ductile response after heat treatment (HT) and hot isostatic pressing (HIP) post-processes. A Phase Field framework is adopted to capture damage nucleation and propagation from two different notch geometries and a discussion on the influence of fracture energy and the characteristic length is carried out. In addition, the influence of oxygen uptake is analysed by reproducing non-inert atmospheres during HT and HIP, showing that oxygen shifts fracture to brittle failures due to the formation of an alpha case layer, especially for the V-notch geometry. Results show that a pure elastic behaviour can be assumed for the as-built SLM condition, whereas elastic-plastic phenomena must be modelled for specimens subjected to heat treatment or hot isostatic pressing. The present brittle Phase Field framework coupled with an elastic-plastic constitutive analysis is demonstrated to be a robust prediction tool for notch fracture after different post-processing routes

    Critical boron-doping levels for generation of dislocations in synthetic diamond

    Get PDF
    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4 /H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm 3 for the one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page
    corecore