265 research outputs found

    Gauge vortex dynamics at finite mass of bosonic fields

    Get PDF
    The simple derivation of the string equation of motion adopted in the nonrelativistic case is presented, paying the special attention to the effects of finite masses of bosonic fields of an Abelian Higgs model. The role of the finite mass effects in the evaluation of various topological characteristics of the closed strings is discussed. The rate of the dissipationless helicity change is calculated. It is demonstrated how the conservation of the sum of the twisting and writhing numbers of the string is recovered despite the changing helicity.Comment: considerably revised to include errata to journal versio

    Relativistic quantum model of confinement and the current quark masses

    Get PDF
    We consider a relativistic quantum model of confined massive spinning quarks and antiquarks which describes leading Regge trajectories of mesons. The quarks are described by the Dirac equations and the gluon contribution is approximated by the Nambu-Goto straight-line string. The string tension and the current quark masses are the main parameters of the model. Additional parameters are phenomenological constants which approximate nonstring short-range contributions. Comparison of the measured meson masses with the model predictions allows one to determine the current quark masses (in MeV) to be ms=227±5, mc=1440±10, mb=4715±20m_s = 227 \pm 5,~ m_c = 1440 \pm 10,~ m_b = 4715 \pm 20. The chiral SU3SU_3 model[23] makes it possible to estimate from here the uu- and dd-quark masses to be mu=6.2±0.2m_u = 6.2 \pm 0.2~ Mev and md=11.1±0.4m_d = 11.1 \pm 0.4 Mev.Comment: 15 pages, LATEX, 2 tables. (submitted to Phys.Rev.D

    Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum

    Get PDF
    We present histological and molecular analyses of the developing human cerebellum from 30 days after conception to 9 months after birth. Differences in developmental patterns between humans and mice include spatiotemporal expansion of both ventricular and rhombic lip primary progenitor zones to include subventricular zones containing basal progenitors. The human rhombic lip persists longer through cerebellar development than in the mouse and undergoes morphological changes to form a progenitor pool in the posterior lobule, which is not seen in other organisms, not even in the nonhuman primate the macaque. Disruptions in human rhombic lip development are associated with posterior cerebellar vermis hypoplasia and Dandy-Walker malformation. The presence of these species-specific neural progenitor populations refines our insight into human cerebellar developmental disorders

    Population-Based Rates of Revision of Primary Total Hip Arthroplasty: A Systematic Review

    Get PDF
    Background: Most research on failure leading to revision total hip arthroplasty (THA) is reported from single centers. We searched PubMed between January 2000 and August 2010 to identify population- or community-based studies evaluating ten-year revision risks. We report ten-year revision risk using the Kaplan-Meier method, stratifying by age and fixation technique. Results: Thirteen papers met the inclusion criteria. Cemented prostheses had Kaplan-Meier estimates of revision-free implant survival of ten years ranging from 88 % to 95%; uncemented prostheses had Kaplan-Meier estimates from 80 % to 85%. Estimates ranged from 72 % to 86 % in patients less than 60 years old and from 90 to 96 % in older patients. Conclusion: Data reported from national registries suggest revision risks of 5 to 20 % ten years following primary THA. Revision risks are lower in older THA recipients. Uncemented implants may have higher ten-year rates of revision, regardless of age

    Integrating Diverse Datasets Improves Developmental Enhancer Prediction

    Get PDF
    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology. © 2014 Erwin et al

    Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies

    Get PDF
    Outbred laboratory mouse populations are widely used in biomedical research. Since little is known about the degree of genetic variation present in these populations, they are not widely used for genetic studies. Commercially available outbred CD-1 mice are drawn from an extremely large breeding population that has accumulated many recombination events, which is desirable for genome-wide association studies. We therefore examined the degree of genome-wide variation within CD-1 mice to investigate their suitability for genetic studies. The CD-1 mouse genome displays patterns of linkage disequilibrium and heterogeneity similar to wild-caught mice. Population substructure and phenotypic differences were observed among CD-1 mice obtained from different breeding facilities. Differences in genetic variation among CD-1 mice from distinct facilities were similar to genetic differences detected between closely related human populations, consistent with a founder effect. This first large-scale genetic analysis of the outbred CD-1 mouse strain provides important considerations for the design and analysis of genetic studies in CD-1 mice

    Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior

    Get PDF
    Purpose We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. Methods We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. Results These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. Conclusion These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis

    Association and Mutation Analyses of 16p11.2 Autism Candidate Genes

    Get PDF
    Autism is a complex childhood neurodevelopmental disorder with a strong genetic basis. Microdeletion or duplication of a approximately 500-700-kb genomic rearrangement on 16p11.2 that contains 24 genes represents the second most frequent chromosomal disorder associated with autism. The role of common and rare 16p11.2 sequence variants in autism etiology is unknown.To identify common 16p11.2 variants with a potential role in autism, we performed association studies using existing data generated from three microarray platforms: Affymetrix 5.0 (777 families), Illumina 550 K (943 families), and Affymetrix 500 K (60 families). No common variants were identified that were significantly associated with autism. To look for rare variants, we performed resequencing of coding and promoter regions for eight candidate genes selected based on their known expression patterns and functions. In total, we identified 26 novel variants in autism: 13 exonic (nine non-synonymous, three synonymous, and one untranslated region) and 13 promoter variants. We found a significant association between autism and a coding variant in the seizure-related gene SEZ6L2 (12/1106 autism vs. 3/1161 controls; p = 0.018). Sez6l2 expression in mouse embryos was restricted to the spinal cord and brain. SEZ6L2 expression in human fetal brain was highest in post-mitotic cortical layers, hippocampus, amygdala, and thalamus. Association analysis of SEZ6L2 in an independent sample set failed to replicate our initial findings.We have identified sequence variation in at least one candidate gene in 16p11.2 that may represent a novel genetic risk factor for autism. However, further studies are required to substantiate these preliminary findings

    Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease

    Get PDF
    BACKGROUND Ustekinumab, a monoclonal antibody to the p40 subunit of interleukin-12 and inter-leukin-23, was evaluated as an intravenous induction therapy in two populations with moderately to severely active Crohn’s disease. Ustekinumab was also evaluated as subcutaneous maintenance therapy. METHODS We randomly assigned patients to receive a single intravenous dose of ustekinumab (either 130 mg or approximately 6 mg per kilogram of body weight) or placebo in two induction trials. The UNITI-1 trial included 741 patients who met the criteria for primary or secondary nonresponse to tumor necrosis factor (TNF) antagonists or had unacceptable side effects. The UNITI-2 trial included 628 patients in whom conventional therapy failed or unacceptable side effects occurred. Patients who completed these induction trials then participated in IM-UNITI, in which the 397 patients who had a response to ustekinumab were randomly assigned to receive subcutaneous maintenance injections of 90 mg of ustekinumab (either every 8 weeks or every 12 weeks) or placebo. The primary end point for the induction trials was a clinical response at week 6 (defined as a decrease from baseline in the Crohn’s Disease Activity Index [CDAI] score of ≥100 points or a CDAI score <150). The primary end point for the maintenance trial was remission at week 44 (CDAI score <150). RESULTS The rates of response at week 6 among patients receiving intravenous ustekinumab at a dose of either 130 mg or approximately 6 mg per kilogram were significantly higher than the rates among patients receiving placebo (in UNITI-1, 34.3%, 33.7%, and 21.5%, respectively, with P≤0.003 for both comparisons with placebo; in UNITI-2, 51.7%, 55.5%, and 28.7%, respectively, with P<0.001 for both doses). In the groups receiving maintenance doses of ustekinumab every 8 weeks or every 12 weeks, 53.1% and 48.8%, respectively, were in remission at week 44, as compared with 35.9% of those receiving placebo (P = 0.005 and P = 0.04, respectively). Within each trial, adverse-event rates were similar among treatment groups. CONCLUSIONS Among patients with moderately to severely active Crohn’s disease, those receiving intravenous ustekinumab had a significantly higher rate of response than did those receiving placebo. Subcutaneous ustekinumab maintained remission in patients who had a clinical response to induction therapy. (Funded by Janssen Research and Development; ClinicalTrials.gov numbers, NCT01369329, NCT01369342, and NCT01369355.
    • …
    corecore