99 research outputs found

    Unobtrusive cot side sleep stage classification in preterm infants using ultra-wideband radar

    Get PDF
    Background: Sleep is an important driver of development in infants born preterm. However, continuous unobtrusive sleep monitoring of infants in the neonatal intensive care unit (NICU) is challenging.Objective: To assess the feasibility of ultra-wideband (UWB) radar for sleep stage classification in preterm infants admitted to the NICU.Methods: Active and quiet sleep were visually assessed using video recordings in 10 preterm infants (recorded between 29 and 34 weeks of postmenstrual age) admitted to the NICU. UWB radar recorded all infant's motions during the video recordings. From the baseband data measured with the UWB radar, a total of 48 features were calculated. All features were related to body and breathing movements. Six machine learning classifiers were compared regarding their ability to reliably classify active and quiet sleep using these raw signals.Results: The adaptive boosting (AdaBoost) classifier achieved the highest balanced accuracy (81%) over a 10-fold cross-validation, with an area under the curve of receiver operating characteristics (AUC-ROC) of 0.82.Conclusions: The UWB radar data, using the AdaBoost classifier, is a promising method for non-obtrusive sleep stage assessment in very preterm infants admitted to the NICU

    On genetic programming representations and fitness functions for interpretable dimensionality reduction

    Get PDF
    Dimensionality reduction (DR) is an important technique for data exploration and knowledge discovery. However, most of the main DR methods are either linear (e.g., PCA), do not provide an explicit mapping between the original data and its lower-dimensional representation (e.g., MDS, t-SNE, isomap), or produce mappings that cannot be easily interpreted (e.g., kernel PCA, neural-based autoencoder). Recently genetic programming (GP) has been used to evolve interpretable DR mappings in the form of symbolic expressions. There exists a number of ways in which GP can be used to this end and no study exists that performs a comparison. In this paper, we fill this gap by comparing existing GP methods as well as devising new ones. We evaluate our methods on several benchmark datasets based on predictive accuracy and on how well the original features can be reconstructed using the lower-dimensional representation only. Finally we qualitatively assess the resulting expressions and their complexity. We find that various GP methods can be competitive with state-of-the-art DR algorithms and that they have the potential to produce interpretable DR mappings

    Ultra-wideband radar for simultaneous and unobtrusive monitoring of respiratory and heart rates in early childhood:A Deep Transfer Learning Approach

    Get PDF
    Unobtrusive monitoring of children’s heart rate (HR) and respiratory rate (RR) can be valuable for promoting the early detection of potential health issues, improving communication with healthcare providers and reducing unnecessary hospital visits. A promising solution for wireless vital sign monitoring is radar technology. This paper presents a novel approach for the simultaneous estimation of children’s RR and HR utilizing ultra-wideband (UWB) radar using a deep transfer learning algorithm in a cohort of 55 children. The HR and RR are calculated by processing radar signals via spectrogram from time epochs of 10 s (25 sample length of hamming window with 90% overlap) and then transforming the resultant representation into 2-dimensional images. These images were fed into a pre-trained Visual Geometry Group-16 (VGG-16) model (trained on ImageNet dataset), with weights of five added layers fine-tuned using the proposed data. The prediction on the test data achieved a mean absolute error (MAE) of 7.3 beats per minute (BPM &lt; 6.5% of average HR) and 2.63 breaths per minute (BPM &lt; 7% of average RR). We also achieved a significant Pearson’s correlation of 77% and 81% between true and extracted for HR and RR, respectively. HR and RR samples are extracted every 10 s.</p

    Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: a systematic review with meta-analysis

    Full text link
    Background: Cerebral oxygenation monitoring utilising near-infrared spectroscopy (NIRS) is increasingly used to guide interventions in clinical care. The objective of this systematic review with meta-analysis and Trial Sequential Analysis is to evaluate the effects of clinical care with access to cerebral NIRS monitoring in children and adults versus care without. Methods: This review conforms to PRISMA guidelines and was registered in PROSPERO (CRD42020202986). Methods are outlined in our protocol (doi: 10.1186/s13643-021-01660-2). Results: Twenty-five randomised clinical trials were included (2606 participants). All trials were at a high risk of bias. Two trials assessed the effects of NIRS during neonatal intensive care, 13 during cardiac surgery, 9 during non-cardiac surgery and 1 during neurocritical care. Meta-analyses showed no significant difference for all-cause mortality (RR 0.75, 95% CI 0.51-1.10; 1489 participants; I2 = 0; 11 trials; very low certainty of evidence); moderate or severe, persistent cognitive or neurological deficit (RR 0.74, 95% CI 0.42-1.32; 1135 participants; I2 = 39.6; 9 trials; very low certainty of evidence); and serious adverse events (RR 0.82; 95% CI 0.67-1.01; 2132 participants; I2 = 68.4; 17 trials; very low certainty of evidence). Conclusion: The evidence on the effects of clinical care with access to cerebral NIRS monitoring is very uncertain. Impact: The evidence of the effects of cerebral NIRS versus no NIRS monitoring are very uncertain for mortality, neuroprotection, and serious adverse events. Additional trials to obtain sufficient information size, focusing on lowering bias risk, are required. The first attempt to systematically review randomised clinical trials with meta-analysis to evaluate the effects of cerebral NIRS monitoring by pooling data across various clinical settings. Despite pooling data across clinical settings, study interpretation was not substantially impacted by heterogeneity. We have insufficient evidence to support or reject the clinical use of cerebral NIRS monitoring

    No neurodevelopmental benefit of cerebral oximetry in the first randomised trial (SafeBoosC II) in preterm infants during the first days of life

    Get PDF
    Aim: Cerebral hypoxia has been associated with neurodevelopmental impairment. We studied whether reducing cerebral hypoxia in extremely preterm infants during the first 72 hours of life affected neurological outcomes at two years of corrected age. Methods: In 2012‐2013, the phase II randomised Safeguarding the Brains of our smallest Children trial compared visible cerebral near‐infrared spectroscopy (NIRS) monitoring in an intervention group and blinded NIRS monitoring in a control group. Cerebral hy oxia was significantly reduced in the intervention group. We followed up 115 survivors from eight European centres at two years of corrected age, by conducting a medical examination and assessing their neurodevelopment with the Bayley Scales of Infant and Toddler Development, Second or Third Edition, and the parental Ages and Stages Questionnaire (ASQ). Results: There were no differences between the intervention (n = 65) and control (n = 50) groups with regard to the mean mental developmental index (89.6 ± 19.5 versus 88.4 ± 14.7, p = 0.77), ASQ score (215 ± 58 versus 213 ± 58, p = 0.88) and the number of children with moderate‐to‐severe neurodevelopmental impairment (10 versus six, p = 0.58). Conclusions: Cerebral NIRS monitoring was not associated with long‐term benefits or harm with regard to neurodevelopmental outcome at two years of corrected age

    Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial

    Get PDF
    Objective To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. Design Phase II randomised, single blinded, parallel clinical trial. Setting Eight tertiary neonatal intensive care units in eight European countries. Participants 166 extremely preterm infants born before 28 weeks of gestation: 86 were randomised to cerebral NIRS monitoring and 80 to blinded NIRS monitoring. The only exclusion criterion was a decision not to provide life support. Interventions Monitoring of cerebral oxygenation using NIRS in combination with a dedicated treatment guideline during the first 72 hours of life (experimental) compared with blinded NIRS oxygenation monitoring with standard care (control).Main outcome measures The primary outcome measure was the time spent outside the target range of 55-85% for cerebral oxygenation multiplied by the mean absolute deviation, expressed in %hours (burden of hypoxia and hyperoxia). One hour with an oxygenation of 50% gives 5%hours of hypoxia. Secondary outcomes were all cause mortality at term equivalent age and a brain injury score assessed by cerebral ultrasonography. Randomisation Allocation sequence 1:1 with block sizes 4 and 6 in random order concealed for the investigators. The allocation was stratified for gestational age (26 weeks).Blinding Cerebral oxygenation measurements were blinded in the control group. All outcome assessors were blinded to group allocation. Results The 86 infants randomised to the NIRS group had a median burden of hypoxia and hyperoxia of 36.1%hours (interquartile range 9.2-79.5%hours) compared with 81.3 (38.5-181.3) %hours in the control group, a reduction of 58% (95% confidence interval 35% to 73%, P&lt;0.001). In the experimental group the median burden of hypoxia was 16.6 (interquartile range 5.4-68.1) %hours, compared with 53.6 (17.4-171.3) %hours in the control group (P=0.0012). The median burden of hyperoxia was similar between the groups: 1.2 (interquartile range 0.3-9.6) %hours in the experimental group compared with 1.1 (0.1-23.4) %hours in the control group (P=0.98). We found no statistically significant differences between the two groups at term corrected age. No severe adverse reactions were associated with the device. Conclusions Cerebral oxygenation was stabilised in extremely preterm infants using a dedicated treatment guideline in combination with cerebral NIRS monitoring.Trial registration ClinicalTrial.gov NCT0159031
    • 

    corecore