6 research outputs found

    Spatial gradients in the cosmological constant

    Get PDF
    It is possible that there may be differences in the fundamental physical parameters from one side of the observed universe to the other. I show that the cosmological constant is likely to be the most sensitive of the physical parameters to possible spatial variation, because a small variation in any of the other parameters produces a huge variation of the cosmological constant. It therefore provides a very powerful {\em indirect} evidence against spatial gradients or temporal variation in the other fundamental physical parameters, at least 40 orders of magnitude more powerful than direct experimental constraints. Moreover, a gradient may potentially appear in theories where the variability of the cosmological constant is connected to an anthropic selection mechanism, invoked to explain the smallness of this parameter. In the Hubble damping mechanism for anthropic selection, I calculate the possible gradient. While this mechanism demonstrates the existence of this effect, it is too small to be seen experimentally, except possibly if inflation happens around the Planck scale.Comment: 12 page

    A New Approach to Testing Dark Energy Models by Observations

    Full text link
    We propose a new approach to the consistency test of dark energy models with observations. To test a category of dark energy models, we suggest introducing a characteristic Q(z) that in general varies with the redshift z but in those models plays the role of a (constant) distinct parameter. Then, by reconstructing dQ(z)/dz from observational data and comparing it with zero we can assess the consistency between data and the models under consideration. For a category of models that passes the test, we can further constrain the distinct parameter of those models by reconstructing Q(z) from data. For demonstration, in this paper we concentrate on quintessence. In particular we examine the exponential potential and the power-law potential via a widely used parametrization of the dark energy equation of state, w(z) = w_0 + w_a z/(1+z), for data analysis. This method of the consistency test is particularly efficient because for all models we invoke the constraint of only a single parameter space that by choice can be easily accessed. The general principle of our approach is not limited to dark energy. It may also be applied to the testing of various cosmological models and even the models in other fields beyond the scope of cosmology.Comment: 19 pages, 5 figure

    Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Full text link
    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs. (Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go
    corecore