87 research outputs found

    Training the Workforce to Conduct Embedded Pragmatic Clinical Trials to Improve Care for People Living with Dementia and Their Caregivers

    Get PDF
    The National Institute on Aging IMbedded Pragmatic Alzheimer’s Disease and Alzheimer’s Disease-Related Dementias Clinical Trials (IMPACT) Collaboratory serves as a national resource for the conduct of embedded pragmatic clinical trials to improve the care of people living with dementia (PLWD) in partnership with the healthcare systems that serve them. Inherent in this objective is the need to train and support a cadre of investigators prepared to conduct this work now and in the future. The Training Core of the IMPACT Collaboratory supports the training of investigators to become experts in this field through three objectives: (1) curricula development and dissemination; (2) network generation and navigation; and (3) a career development award program. The innovative approach of the Training Core will require developing content and providing training experiences that recognize the unique challenges of research at the intersection of health systems, pragmatic trials, and PLWD and their caregivers. Ultimately, we seek to build the nation’s capacity to conduct research that bridges the gaps between efficacy studies to effectiveness research to implementation science. Although foundational resources in the methods of each of these areas are already available, few actually focus on pragmatic trials embedded within healthcare systems that focus on PLWD. To bring new interventions for PLWD from efficacy to widespread implementation, researchers must build diffusability, adaptability, heterogeneity, and scalability into the design of the intervention. In achieving these objectives, the Training Core will utilize the network of investigators, institutions, and stakeholders represented in the IMPACT Collaboratory

    A framework for real-time monitoring, analysis and adaptive sampling of viral amplicon nanopore sequencing

    Get PDF
    The ongoing SARS-CoV-2 pandemic demonstrates the utility of real-time sequence analysis in monitoring and surveillance of pathogens. However, cost-effective sequencing requires that samples be PCR amplified and multiplexed via barcoding onto a single flow cell, resulting in challenges with maximising and balancing coverage for each sample. To address this, we developed a real-time analysis pipeline to maximise flow cell performance and optimise sequencing time and costs for any amplicon based sequencing. We extended our nanopore analysis platform MinoTour to incorporate ARTIC network bioinformatics analysis pipelines. MinoTour predicts which samples will reach sufficient coverage for downstream analysis and runs the ARTIC networks Medaka pipeline once sufficient coverage has been reached. We show that stopping a viral sequencing run earlier, at the point that sufficient data has become available, has no negative effect on subsequent down-stream analysis. A separate tool, SwordFish, is used to automate adaptive sampling on Nanopore sequencers during the sequencing run. This enables normalisation of coverage both within (amplicons) and between samples (barcodes) on barcoded sequencing runs. We show that this process enriches under-represented samples and amplicons in a library as well as reducing the time taken to obtain complete genomes without affecting the consensus sequence

    Developing the Agile Implementation Playbook for Integrating Evidence-Based Health Care Services into Clinical Practice

    Get PDF
    Problem: Despite the more than $32 billion the National Institutes of Health has invested annually, evidence-based health care services are not reliably implemented, sustained, or distributed in health care delivery organizations, resulting in suboptimal care and patient harm. New organizational approaches and frameworks that reflect the complex nature of health care systems are needed to achieve this goal. Approach: To guide the implementation of evidence-based health care services at their institution, the authors used a number of behavioral theories and frameworks to develop the Agile Implementation (AI) Playbook, which was finalized in 2015. The AI Playbook leverages these theories in an integrated approach to selecting an evidence-based health care service to meet a specific opportunity, rapidly implementing the service, evaluating its fidelity and impact, and sustaining and scaling up the service across health care delivery organizations. The AI Playbook includes an interconnected eight-step cycle: (1) identify opportunities; (2) identify evidence-based health care services; (3) develop evaluation and termination plans; (4) assemble a team to develop a minimally viable service; (5) perform implementation sprints; (6) monitor implementation performance; (7) monitor whole system performance; and (8) develop a minimally standardized operating procedure. Outcomes: The AI Playbook has helped to improve care and clinical outcomes for intensive care unit survivors and is being used to train clinicians and scientists in AI to be quality improvement advisors. Next Steps: The authors plan to continue disseminating the details of the AI Playbook and illustrating how health care delivery organizations can successfully leverage it

    The landscape of somatic mutation in normal colorectal epithelial cells.

    Get PDF
    The colorectal adenoma-carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions that lead to cancer1. However, our understanding of the earliest phases of colorectal neoplastic changes-which may occur in morphologically normal tissue-is comparatively limited, as for most cancer types. Here we use whole-genome sequencing to analyse hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed; some of these were ubiquitous and continuous, whereas others were only found in some individuals, in some crypts or during certain periods of life. Probable driver mutations were present in around 1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially increased mutational burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancer

    A cross-institutional analysis of the effects of broadening trainee professional development on research productivity

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brandt, P. D., Sturzenegger Varvayanis, S., Baas, T., Bolgioni, A. F., Alder, J., Petrie, K. A., Dominguez, I., Brown, A. M., Stayart, C. A., Singh, H., Van Wart, A., Chow, C. S., Mathur, A., Schreiber, B. M., Fruman, D. A., Bowden, B., Wiesen, C. A., Golightly, Y. M., Holmquist, C. E., Arneman, D., Hall, J. D., Hyman, L. E., Gould, K. L., Chalkley, R., Brennwald, P. J., Layton, R. L. A cross-institutional analysis of the effects of broadening trainee professional development on research productivity. Plos Biology, 19(7), (2021): e3000956, https://doi.org/10.1371/journal.pbio.3000956.PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health (NIH) funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the NIH BEST awardee institutions included career panels, skill-building workshops, job search workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from 10 NIH BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce.Funding sources included the Common Fund NIH Director’s Biomedical Research Workforce Innovation Broadening Experiences in Scientific Training (BEST) Award. The following institutional NIH BEST awards (alphabetical by institution) included: DP7OD020322 (Boston University; AFB, ID, BMS, LEH); DP7OD020316 (University of Chicago; CAS); DP7OD018425 (Cornell University; SSV); DP7OD018428 (Virginia Polytechnic Institute; AVW, BB); DP7OD020314 (Rutgers University; JA); DP7OD020315 (University of Rochester; TB); DP7OD018423 (Vanderbilt University; KAP, AMB, KLG, RC); DP7OD020321 (University of California, Irvine; HS, DAF); DP7OD020317 (University of North Carolina, Chapel Hill; PDB, PJB, RLL); DP7 OD018427 (Wayne State University; CSC, AM). National Institutes of Health (NIH) General Medical Sciences - Science of Science Policy Approach to Analyzing and Innovating the Biomedical Research Enterprise (SCISIPBIO) Award (GM-19-011) - 1R01GM140282-01 (University of North Carolina at Chapel Hill; RLL, PDB, PJB)

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Somatic mutations reveal asymmetric cellular dynamics in the early human embryo.

    Get PDF
    Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and their contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis
    corecore