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The ongoing SARS-CoV-2 pandemic demonstrates the utility of real-time
sequence analysis in monitoring and surveillance of pathogens. However, cost-
effective sequencing requires that samples be PCR amplified and multiplexed via
barcoding onto a single flow cell, resulting in challenges with maximising and
balancing coverage for each sample. To address this, we developed a real-time
analysis pipeline tomaximise flow cell performance and optimise sequencing time
and costs for any amplicon based sequencing.We extended our nanopore analysis
platform MinoTour to incorporate ARTIC network bioinformatics analysis
pipelines. MinoTour predicts which samples will reach sufficient coverage for
downstream analysis and runs the ARTIC networks Medaka pipeline once
sufficient coverage has been reached. We show that stopping a viral
sequencing run earlier, at the point that sufficient data has become available,
has no negative effect on subsequent down-stream analysis. A separate tool,
SwordFish, is used to automate adaptive sampling on Nanopore sequencers
during the sequencing run. This enables normalisation of coverage both within
(amplicons) and between samples (barcodes) on barcoded sequencing runs. We
show that this process enriches under-represented samples and amplicons in a
library as well as reducing the time taken to obtain complete genomes without
affecting the consensus sequence.
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1 Introduction

Oxford Nanopore Technologies (ONT) sequencers (MinION, GridION,
Promethion) have allowed sequencing to become a dynamic, real-time process (Jain
et al., 2016). By writing batches of sequenced reads to disk after DNA has finished
translocating a pore, these data become available immediately, enabling parallel data
analysis and so reducing the time required to provide insight into the sequenced sample.
Even prior to the ongoing SARS-CoV-2 pandemic, the benefits of real-time analysis of
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sequence data have been demonstrated (Quick and Loman, 2016;
Gardy and Loman, 2018), and rapid lineage assignment and
Variant of Concern/Variant under Investigation (VoC/VuI)
status can be time sensitive when tracking a new variant
(O’Toole et al., 2021).

The ARTIC Network (Quick et al., 2017; Tyson, 2020) (https://
artic.network) provides comprehensive protocols for both wet lab
and downstream best practice informatics analyses for SARS-CoV-
2, amidst other pathogenic viruses. The use of PCR amplification can
lead to unequal coverage of individual amplicons in a sequencing
library such that some reach sufficient coverage for reliable analysis
faster than others. Further sequencing of these amplicons with
sufficient coverage will not benefit the final down-stream
analysis. Even using 96 barcodes to multiplex samples, the
average ONT MinION/PromethION flowcell is capable of
providing more data than required. Ideally, sequencing would be
stopped as soon as sufficient data are available for analysis with
balanced coverage of amplicons in the library. Aside from wet lab
optimisations, ONT sequencers offer Run Until, the ability to stop
sequencing once some pre-defined condition has been met, and
adaptive sampling (Payne 2020), the ability to stop sequencing and
unblock off target DNA from the pore, whichmay help address these
problems.

As part of the COG-UK network (Cog, 2020; Nicholls et al.,
2021) we generated thousands of SARS-CoV-2 consensus
sequences using ONT sequencers. To test the utility of run

until in this context, we incorporated the ARTIC pipeline into
our minoTour tool (Munro et al., 2021) (https://github.com/
looselab/minotourapp) and developed a model to predict if
sufficient coverage will be obtained for each barcoded sample
on a flowcell, stopping sequencing when all samples predicted to
achieve sufficient coverage do so. We demonstrate this has no
effect on the ability to assign lineages (O’Toole et al., 2021) to
samples and minimal impact on SNP calls. The resultant shorter
sequencing runs preserve flow cell health, allowing them to be
flushed and reused for other experiments, reducing the effective
cost per sample for sequencing.

To determine if adaptive sampling could be used to select
individual amplicons from one or more samples to improve and
balance the coverage across SARS-CoV-2 genomes we developed
SwordFish. This tool enables truly “dynamic” adaptive sampling
by providing feedback between minoTour and the ReadFish
pipeline (https://github.com/looselab/swordfish). SwordFish
couples ReadFish to minoTour by querying minoTour for
information on specific sequencing runs and updating
ReadFish (Payne et al., 2021) with new barcode/amplicon
targets in response to ongoing data generation (see Figure 1).
Using a custom 1,200 base pair amplicon scheme (Supplementary
File S3.5) we show adaptive sampling can filter out over abundant
samples and individual amplicons, and coupled with run until,
results in time savings and an increase in the number of
amplicons reaching median 20× coverage.

FIGURE 1
Flowchart demonstrating ReadFish/SwordFish/minoTour interactions. The slow analysis loop (green) is used to update ReadFish’s target TOML file.
The loop is run once every 60 s. MinFQ uploads FASTQ sequence data to minoTour, which tracks coverage for each amplicon on each barcode.
SwordFish queries minoTour for the set of amplicon coordinates on each barcode to unblock. These are defined as those exceeding a specified level of
coverage (e.g., 50×). SwordFish updates a TOML file that can be read by ReadFish. The fast analysis loop (red) is run every read batch (approximately
0.8 s). ReadFish updates its coordinates from the TOML file, base calls and demultiplexes all reads in the batch using Guppy, and then sends unblock
signals to MinKNOW for any reads that align inside any amplicon with sufficient coverage.
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2 Implementation

2.1 MinoTour ARTIC pipeline
implementation

The standard ARTIC pipeline uses Nanopolish (Loman et al.,
2015; Quick et al., 2017) for signal level analysis of raw ONT data
during variant calling. Unfortunately, signal level data are
unavailable within minoTour. Instead we integrated ARTIC’s
alternate Medaka (https://github.com/nanoporetech/medaka)
workflow to enable real-time generation of consensus genomes
during sequencing. MinoTour’s workflow contrasts with other
web based analysis platforms which either do not exploit the
real-time features of the nanopore platform or do not have
access to the sequence data themselves for further analysis
(Bruno et al., 2021; Ferguson et al., 2021). The ARTIC network
does provide a tool, RAMPART, which can monitor a run over time
and complete analysis for individual samples, but does not provide
many of the other features shown here at this time, such as lineage
analysis or adaptive sampling. (https://artic.network/rampart). We
integrated the ARTIC SARS-CoV-2Medaka pipeline intominoTour
as a custom python script, which is run as a Celery task (https://docs.
celeryproject.org/en/stable/), processing read batches as they are
uploaded. The pipeline is asynchronous, preventing blocking of any
other analyses being performed. Uploaded reads are filtered by
length, with the minimum and maximum read lengths
permissible calculated from the underlying amplicon scheme.
Reads are further filtered by the QC score assigned by Guppy
(assigned pass by Guppy) and then mapped to an appropriate
SARS-CoV-2 reference using minimap2 (Li, 2018). Per base
coverage is tracked in optimised numpy arrays using the mapped
reads in real-time (Walt and Varoquaux, 2011).

Coverage is tracked for each individual amplicon on a sample as
defined by the primer scheme in use. Default parameters for triggering
the analysis of a specific sample are at least 90% of the amplicons
(completeness) covered at a median depth of at least 20×, though these
are user configurable. Once triggered, the accumulated mapped reads
for that sample are passed to the ARTIC network’s Medaka pipeline.
Numerous primer schemes can be chosen, including custom schemes,
simply by creating the appropriate primer scheme and reference files
and uploading them to minoTour.

MinoTour uses pangolin (O’Toole et al., 2021) to assign a PANGO
lineage from the most recent lineage classifications. Consensus
sequences are also compared with current VoC/VuI definitions as
defined at https://github.com/phe-genomics/variant_definitions,
using the Aln2Type tool (https://github.com/connor-lab/aln2type).
Both PANGO lineages and VoC/VuI designations are
automatically updated daily by minoTour. A report is generated
for each sample (see Supplementary Figures S1A, B) and optionally
users can be notified of VoC/VuI identifications via the minoTour
Twitter API. Sequences within each run are also globally aligned using
MAFFT (Katoh et al., 2002), with an illustrative tree generated using
iQ-Tree (Minh et al., 2020) and visualised with figtree.js or ToyTree
(Rambaut, 2021). Additional background sequences can be included
in these trees if desired and the distribution of SNPs within consensus
sequences from the run, compared with the reference are displayed in
a SNIPIT plot (https://github.com/aineniamh/snipit) (Supplementary
Figure S1A).

Results from the pipeline are maintained for historical record,
with files stored on disk and metadata and metrics about the ARTIC
sequencing experiment stored in a SQL database. These results are
then visualised in the minoTour web server. Once a run has
completed, which is automatically recognised by the fact that no
further data are added to the flow cell within a fixed period of time,
all analyses are automatically re-run to ensure maximum coverage
for consensus generation. A retention policy for sequence data is set
globally for the site and all read data can be automatically scrubbed
from the server after consensus generation, if desired.

2.2 ARTIC visualisations and reports

If running an ARTIC analysis on a flow cell, minoTour provides
a custom page containing all ARTIC data and visualisations
(Supplementary Figures S1A–D). This page shows the
performance of all samples in the run and then visualises
detailed performance and information available for an individual
sample. A sortable and searchable summary table shows users
metrics about each sample in the run, with average coverage,
number of amplicons at different depths and basic statistics such
as mean read length and read count. If the sample had sufficient data
to be run through the ARTIC pipeline, we display the assigned
lineage and VoC/VoI status.

Further details can be seen for a chosen sample such as per base
coverage plots for the sample genome. Assigned PANGO lineage
information is provided in tabular form, with links out to further
information describing each lineage (https://cov.lineages.org and
https://outbreak.info). The VoC/VuI report generated by Aln2Type
is visualised and the final status assigned displayed. A PDF report for
each barcoded sample and the overall run can be exported, showing
all above metrics for each sample. An example can be found in
Supplementary File S3.1.

Pass and fail VCF files, BAM files and pangolin lineages can be
downloaded. Optionally, these features can be disabled and
minoTour will remove all files that may contain identifiable
sequence information from the server. By maintaining
compatibility with standard ARTIC bioinformatics pipelines, this
tool can be adapted to run any ARTIC compatible pathogen analysis
simply by uploading the appropriate reference files.

2.3 Amplicon coverage prediction model

To predict if individual samples are likely to result in an
informative genome sequence, providing the basis for minoTour’s
decision on when to stop the run, minoTour assumes the user is
seeking minimal useful genome completeness (default 90%
amplicons with at least 20× median “pass” read coverage). Using
median coverage depth reduces the impact of small insertions/
deletions on monitoring amplicon coverage. In addition, median
coverage is only calculated for unique regions of each amplicon,
removing any overlap between amplicons. This prevents amplicons
with more than 50% overlap being incorrectly labelled as complete
due to the coverage of a neighbouring amplicon. MinoTour then
assumes that each ONT flow cell can generate a minimum of
100,000 reads for each sample detected and so projects whether
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each sample will reach minimal useful completeness using a simple
model (Equation 1). A sample is projected to finish if 90% of the
amplicons have a predicted final coverage over the minimum
required coverage (default 20×). All sequencing runs gather data
for 1 h before any of our strategies are used to ensure reasonable
sampling of the loaded library.

Ampliconmedian coverage
Totalmapped reads

× Barcodes identified × 100, 000( )
≥Min. required coverage (1)

2.4 SwordFish–real-time readfish target
updating software

Swordfish provides a python based command line interface to
connect minoTour to ReadFish via minoTour’s Representational
State Transfer (REST) Application Programming Interface (API),
querying for updates at a user specified interval. In the context of
amplicon based sequencing, SwordFish receives a list of barcodes
and amplicon genomic coordinates for each barcode from
minoTour, where the median coverage for any returned
amplicon exceeds the user defined threshold. SwordFish then
adds the coordinates of these over coverage amplicons to the
rejection targets for the correct barcode in ReadFish’s
configuration file. ReadFish will then reject any future reads
corresponding to that amplicon. If a barcoded sample has
completed analysis, SwordFish can switch off that barcode
entirely for the remainder of the experiment. The relationship
between minoTour, swordfish and ReadFish is shown more
clearly in Figure 1. It is worth noting that whilst this manuscript
focuses on SARS-CoV-2, this approach is applicable to any viral
amplicon primer scheme that can be used with the ARTIC field
bioinformatics pipeline provided the amplicons are sufficiently long
and ligation, not rapid, sequencing is used. If rapid kit based
sequencing were to be used, the amplicons would have to be of
sufficient size to generate a library with a long enough mean read
length that the software would have time to unblock them.

2.5 Post run genome analysis

To determine how manipulating run time affects results, we
defined three time points of interest for a sample during a
sequencing run. The Full Run time point, the Run Complete time
point and the Sample Complete time point. Full Run is defined as the
time at which the run completed with no intervention. Run Complete
is the point in a run where all samples our algorithm predicted would
complete (90% completeness, 20×) had done so. Finally, Sample
Complete is the point at which an individual sample in a run
reached sufficient completeness and is automatically put through
the ARTIC pipeline by minoTour, whilst the run continues. A
sequencing run will have only one Full run time point, one Run
complete time point, but will have many Sample Complete time
points. This concept is visualised in Figure 2.

To create consensus genomes from time points equivalent to
our ARTIC pipeline and compare the results of both Medaka and

Nanopolish we had to calculate the sets of both the signal
(FAST5) and FASTQ files equivalent to those that would have
been uploaded to minoTour at each of the time points. We
iteratively mapped all reads from each barcode across
13 reference ARTIC runs using minimap2 (Li, 2018), in
FASTQ file creation order, creating cumulative alignment files.
Using mosdepth (Pedersen and Aaron, 2018) we determined
cumulative coverage at each base across the reference genome,
for each FASTQ file creation time point, and then the median
coverage for each amplicon using the same primer scheme based
approach as in minoTour. This identifies the time points in each
run when sufficient data are available to trigger minoTour to
analyse the samples, as well as the points that minoTour would
have recommended stopping the run based on it is amplicon
coverage predictions. The creation time point for the FASTQ file
that results in sufficient coverage to meet any appropriate
thresholds was used to identify the time in the sequencing run
when analysis would occur. Using this method, we can identify
the equivalent FAST5 file for that FASTQ file from the ONT
sequencing summary file, enabling us to analyse the data with
both Medaka and Nanopolish (code available from https://
github.com/LooseLab/artic_minotour_analyses). For each
time-point, we generated consensus FASTA files to calculate
genome recovery, defined as the proportion of non N
positions in the final sequence. This is a close approximation
of the minoTour completeness metric, as any base that has 20×
coverage going into the ARTIC Medaka pipeline will most likely
be called as non N.

3 Results and discussion

3.1 Amplicon coverage prediction model

The amplicon prediction model performed well across all runs
(Figure 3A, R2 = 0.991). The model proved to be conservative,
slightly under-predicting against final coverage, which prevented
minoTour fromwaiting for genomes to complete which would never
do so. After an hour of data, predicted genome recovery collection
compares well with that observed at the calculated Run Complete
times for the 13 runs (Figure 3B). The strong correlation (R2 = 0.993)
between predicted values and values actually recovered provides
confidence in our algorithm. Comparing the genome recovery
achieved at the Run Complete time point with the genome
recovery seen at Full Run (Figure 3C) shows some small further
benefits in recovery (R2 = 0.996) when allowing the run to reach
natural completion. This is expected as continuing the run for longer
allows the missing 10% of each genome to acquire some further
coverage. However the longer a run continues the more it is
information return diminishes, so stopping earlier accelerates
time to answer as well as allowing the flow cell to be reused and
save costs. This can be seen more clearly in Figure 3D, (R2 = 0.994)
when filtering out those runs where no time is saved by our model, as
these runs have the same time defined for Run Complete and
Full Run.

Our model confidently predicts if a sample will generate
sufficient data to provide useful information with enough
accuracy to support a decision on whether or not to continue
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sequencing. There is a potential small loss in data as a consequence
of reducing the sequencing time. We therefore quantify the
consequences of this on time saved, lineage assignment and SNP
calling below.

3.2 Run until time savings

To quantify whether this approach results in useful time savings,
we tracked metrics and predicted amplicon coverages per barcoded
genome sample using minoTour for 13 sequencing runs. We
visualised a comparison of calculated Run Complete time and
Full Run time in Figure 4A. Runs 9 through 13 were actively
monitored with minoTour and manually stopped at earlier run
times in response to the model predictions, resulting in the shorter
Full Run length and the similarly quick Run Complete time point.
Time savings using this approach are dependent on the sample
composition, but are often significant (for example, Run 4,
Figure 4A). By plotting all barcodes on every run, we can
visualise the point in time in a run when all barcodes predicted
to finish in a run cross the threshold. Negative controls are treated as
a sample, and are predicted to fail, so they do not prevent a run from
completing. Time savings are greater in runs with fewer samples as
each has relatively more sequencing capacity available as can be seen
in Figures 4B–N.

3.3 SNPS and lineages

Finally we investigated whether stopping early affected the
information you can retrieve from consensus genomes, and
compared whether minoTour loses SNP accuracy by using the
Medaka pipeline rather than Nanopolish.

3.3.1 Lineage assignment to consensus genomes
Across all 13 sequencing runs, a total of 508 SARS-CoV-

2 samples were sequenced (including negative and positive
controls). The number of genomes produced by the ARTIC
Pipeline at each time point were: Full run, 456 genomes; Run
Completed, 454 genomes; Sample Completed, 334 genomes. The
two additional genomes produced at the Full Run time over the Run
Complete time are both extremely low completeness genomes (only
1% of the genome has consensus sequence) that failed to call at the
Run Complete time. Across all time points for any given sample in
any run, we observe complete concordance in lineage assignment
between either Medaka or Nanopolish generated genomes
(Supplementary File S3.2). Any loss of data seen by stopping
sequencing early did not impact PANGO lineage assignment in a
SARS-CoV-2 sequencing run. We note that these sequences are
predominantly from the B.1.1.7 lineage due to the time periods in
which they were collected, but given our observations on SNP calling
below do not envisage this being an issue.

3.3.2 Comparing SNPs between Medaka and
Nanopolish consensus genomes

We compared Nanopolish and Medaka consensus genome
sequences for all genomes in our data set (1,245 genomes across
Full Run, Run Complete and Sample Complete time points from
508 unique samples). The SNPs were called using nextclade (https://
clades.nextstrain.org) with the output data available in
Supplementary Files S3.3, S3.4.

Of the 456 genomes generated at the Full Run time-point,
341 called SNPs identically whether they were generated by
Medaka or Nanopolish. The majority of the remaining genomes
eitherMedaka or Nanopolish are unable to confidently call a site and
so assigns an ambiguous base (N), altering the SNP call. Of more
concern, there are some sites which are incorrectly assigned as a

FIGURE 2
An example run, showing how timepoints are calculated. Five barcodes are displayed. Black horizontal line indicates the 20× coverage on 90% of
amplicons threshold. The time at which a barcode reaches this threshold is recorded as the “Sample Completion” (SC) time point. Two illustrative samples,
barcode 1 and 3, are not predicted to finish, and do not cross this threshold. Hence they have no associated SC time. Once all barcodes predicted to finish
are complete, we record the “Run Completed” (RC) time point. This is the time minoTour would recommend stopping the run. The Full Run time is
when the run stopped without any early intervention.
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reference call by Medaka (Table 1), 27 total. Upon inspection, the
majority of these are for one single site in the genome at position
28,111 (Figure 5A).We also note one site, 913, for which Nanopolish
rarely can call a SNP at lower coverage, but changes to an ambiguous
call at higher depth, however this is a very unusual case. It is very
infrequent that an increase in coverage over 20× alters a call. An
example of this is illustrated at Figure 5B.

At the Run Complete time point, there is an increase in the
number of ambiguous (N) sites called by both pipelines, most likely a
consequence of the slightly lower coverage data available (Tables 1,
2). However overall the difference between calls made in consensus
genomes generated by both pipelines at this time point is very slight
(99.7% identical calls). It is worth mentioning that as this is the time
point that genomes would finish in a minoTour ARTIC run, we
conclude that there is very little effect in using Medaka in our
pipeline. There is a very slight increase in the number of SNPs being
called by one pipeline being called as an N in the other (1 for
Nanopolish SNPs and 3 for Medaka SNPs), although again this is
likely due to slightly lower coverage.

The Sample Complete time genomes are of lower quality, with
approximately a 5 fold increase in the number of Ns seen in a

generated consensus genome (Table 2). However we note that only
one sample finishes at this time point in an actual run (the last to
reach our completion threshold). When comparing Nanopolish and
Medaka genomes at the Sample Complete time point, we can see
that there is a very small increase over the Run Complete time point
generated genomes in disagreement between the SNP calls
(0.00013% of all calls). However the calls are effectively
concordant even at this earliest time point, and as previously
noted, only one generated genome actually finishes at this time
point in an actual run.

Finally we compared the genomes that did not reach our
completion threshold in our run, thus lacking a Sample Complete
time point. As shown in Table 3, these genomes are of much lower
quality, and do not improve by allowing the run to continue to the Full
Run length. They are approximately 48% Ambiguous N calls on
average, and there is no gain in the average number of SNPs called.

Thus we conclude the majority of SNP call differences between
Medaka and Nanopolish are differences in ambiguous calls. Overall,
we conclude that Medaka is sufficient for variant calling and lineage
assignment, but in our downstream analysis workflows we routinely
run both pipelines for confirmation.

FIGURE 3
Genome recovery throughout all 13 runs. Blue line (line of best fit), Orange line (x = y). (A) Compares the predicted genome recovery based on
1 hours sequencing (X-axis) with the actual coverage seen at the end of the run (Y-axis). Predicted recovery is the proportion of amplicons in a sample
expected to reach 20× coverage. Actual coverage is the proportion of nonN bases in the consensus genomes obtained at the end of the run (Full Run). (B)
Compares the same predicted genome recovery with the actual coverage observed at the Run Complete time as defined by minoTour. (C)
Compares the actual coverages reported in A (Full Run) and B (RunComplete). (D) Is the same as C but ignores those runswhere the RunComplete time is
the same as the Full Run time.
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3.4 SwordFish based adaptive sampling

Sequencing libraries were prepared using the standard ARTIC
protocol and a custom set of 1,200 base pair primers (Freed, 2020)
(BED file available in Supplementary File S3.5). Sequencing was
monitored in real-time using minoTour (Munro et al., 2021) and
SARS-CoV-2 samples analysed using minoTours ARTIC pipeline.
ReadFish at commit 0ccb5932 (https://github.com/LooseLab/
readfish/tree/0ccb59324906635a0d077f94d7f82388039885cb) was used
to perform targetted sampling, as unlike ONTs adaptive sampling,

experimental configurations can be updated during a run (Payne
et al., 2020). MinKNOW was configured to provide data in 0.8 s
chunks. Sequencing was performed on a GridION Mk1 (ONT).
The method requires Guppy version 4.2 or later for barcode de-
multiplexing. Basecalling was performed using the HACmodel for
final analysis with “require both ends” for de-multiplexing set to
true. ReadFish was configured to use fast base calling, requiring
barcodes at one end. Starting configuration TOMLs and
commands can be found at https://github.com/looselab/
swordfish-experiments.

FIGURE 4
Time savings by using minoTours ARTIC Pipeline and amplicon coverages for each run, across the course of the run. (A) The Full Run time point
plotted against minoTours Run complete time point as hours since the run started, for each run. Number of samples shown in brackets below the run
label. (B–N) Samples across 13 runs showing the percentage of amplicons at 20× over time. Barcodes that we project to finish are displayed with solid
lines, whilst barcodes we project not to finish are dashed. 90% (Our threshold for firing) is marked on each plot. Once all barcodes that are projected
to finish cross the 90% threshold, we would instruct MinKNOW to stop the run. This time is marked by a solid blue vertical line.
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In our first demonstrative experiment, we selected a range of
representative clinical samples (see Supplementary Table S1) with
Cycle threshold (Ct) values ranging from 14 to 30, as well as some
samples for which no Ct values were available. We utilised the
standard ARTIC requirement for reads being barcoded at each end
and sequenced using the LSK109 library protocol (ONT).
Barcoding at both ends undoubtedly favours downstream
analysis as rejected reads will only possess a single starting

barcode, and so are assigned as unclassified, Even so, this
approach provides an ideal test for throughput and the
performance of ReadFish. We ran three separate experiments
on our flow cell, visualised in Supplementary Figure S2. The
library was not normalised prior to loading, and four barcodes
were clearly abundant 58, 64, 76, 88, when no adaptive sampling
was applied to the library Supplementary Figure S2A. We began by
unblocking based purely on barcode assignment Supplementary

TABLE 1 Contingency table comparing SNP calling between Medaka and Nanopolish for all three time points. Displayed are total counts across all sites called as
either reference (Ref), SNP or unknown (N). Only genomes present in each category (Full Run, Run Completed and Sample Completed) are included in the analysis.

Medaka

Full Run Run completed Sample completed

N SNP Ref N SNP Ref N SNP Ref

Nanopolish N 151,292 29 418 183,709 32 412 837,973 116 253

SNP 25 10,727 5 26 10,697 6 78 9,984 13

Ref 24 0 9,818,580 33 0 9,786,167 37 2 9,132,765

FIGURE 5
SNIPIT plots demonstrating particularly divergent positions for SNP calls between Medaka and Nanopolish. The tracks from top to bottom show
SNPs as called from consensus genomes for the Sample Complete time, Run Until and Full run time points (in this order) for both the Medaka and
Nanopolish pipelines. (A) SNIPIT plot showing an example pair of consensus genomes with Nanopolish calling a SNP at position 28111 but Medaka calling
reference. (B) SNIPIT plot, showing the Nanopolish pipeline switch from a SNP to an N at position 913 with more data, on a single sample across our
three time points.
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Figure S2B. Unexpectedly, even given the 1200bp read lengths, this
resulted in the ability to detect 16 more amplicons at 50× coverage
on the less abundant barcodes, compared with the control run after
110 min of sequencing, as shown in Supplementary Table S2.

We next used SwordFish to update ReadFish’s targets in real-
time, based on real-time analysis by minoTour, to provide
granular control of individual amplicon/barcode combinations.
Using the same library as our previous experiment, we applied a
simple threshold approach rejecting reads from amplicon/
barcode combinations once coverage exceeded 50×. More
sophisticated algorithms for normalisation, for example
probabilistic discard, could be considered but would have to
account for the large dynamic range of amplicon concentration in
samples. As shown in Supplementary Table S2, it is possible to
individually address each amplicon/barcode combination to
ensure the total coverage does not exceed a predetermined
threshold. Inspection of the relative change in amplicon/
barcode proportion reveals that some amplicons within
abundant barcodes are themselves effectively enriched,
suggesting that this targeted approach is better than simple
inactivation of entire barcodes. The relative change in
proportion of classified amplicon/barcode combinations is
slight, as expected for the short amplicons sequenced here
(Supplementary Figure S3C, Supplementary Figure S3E and
Supplementary Figure S3G). Enrichment efficiency is further
reduced by short fragments present within these libraries
(Supplementary Figures S4, S5).

The current maximum number of barcodes in a library available
for nanopore sequencers is 96, at the time of writing. We proceeded
to test our approach against the maximum number of samples,
targeting 200× coverage of each sample, running for 6 h on a

TABLE 2 Contingency table displaying the mean count for sites called as either reference (Ref), SNP or unknown (N), for all three time points (Full Run, Run
Completed and Sample Completed), for each SNP calling pipeline. Note, The total of each column, excluding (N. genomes) represents every position in a SARS-
CoV-2 genome. Only genomes present in each category (Full Run, Run Completed and Sample Completed) are included in the analysis.

Medaka Nanopolish

Full run Run complete Sample completed Full run Run complete Sample completed

N 453 550 2,509 454 551 2,510

SNP 32 32 30 32 32 30

Ref 29,398 29,301 27,345 29,397 29,300 27,343

N. Genomes 334 334 334 334 334 334

TABLE 3 Contingency table displaying the mean count for sites called as either
reference (Ref), SNP or unknown (N). Note, The total of each column, excluding
(N. genomes) represents every position in a SARS-CoV-2 genome. Only
genomes NOT present in the Sample completed category are included in the
analysis.

Medaka Nanopolish

Full Run Run Until Full Run Run Until

N 14,519 14,813 14,495 14,813

SNP 19 19 19 19

Ref 15,353 15,059 15,374 15,056

N. Genomes 123 120 123 120

FIGURE 6
The median amplicon read count for each barcode, for the same
library across different swordfish threshold targets. (A) Baseline, where no
adaptive sampling was applied. 100 and 200 aremarked as the targets for
the other 2 experiments. (B) SF100 had a 100× coverage swordfish
threshold target. 100× is marked on the graph. (C) Fold change for the
median amplicon read count per barcode, between SF100x and Baseline.
(D) SF200 had a 200× coverage threshold target. 200 is marked on the
graph. (E) Fold change for the median amplicon read count per barcode,
between SF200x and Baseline.
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MinION Mk1b. Given that our amplicon primer scheme has
29 amplicons, we are tracking a total 2,784 unique amplicon/
barcode combinations. We then ran the same library targeting
amplicon coverage of 100× for a further 6 h. Finally we ran a 6 h
control experiment, with no adaptive sampling. The median
amplicon coverages for each sample achieved are displayed in
Figure 6. As each condition was run on the same flowcell, after a
nuclease flush and reload, there was a small decrease in total
sequence yield for each experiment (Supplementary Table S3).
Potential maximum enrichment was again brought down by the
presence of some short material in the library (Supplementary
Figure S6), but ReadFish displayed sufficient performance to keep
up with 96 barcodes, with the unblocked read length falling far
short of the sequenced. Inspecting some illustrative barcodes
(unclassified, 32, 62, 92, 93), we see that indeed our analysis bins
all unblocked reads into unclassified, as shown in Supplementary
Figure S7. Figure 7 illustrates that using adaptive sampling with
ReadFish/Swordfish resulted in an increase in the number of
amplicons reaching useful coverages, as well as accelerating the
time at which these amplicons reached this coverage. We also see an
increase in the number of amplicons that we recover in the
SwordFish enabled runs, recovering up to 108 more amplicons at
50× coverage when compared to the control run, as shown in
Supplementary Table S4. It is worth noting that these amplicons
may have reached this coverage in the control run with more time, as
there was a smaller yield in our control run due to having had two
experiments run on the flowcell beforehand. Thus, although the
effects are relatively small, this approach of individually addressing
each amplicon on each barcode in a 96 barcode library will benefit
the sequencing run.

In a third set of experiments, Swordfish/Readfish was applied to
the midnight protocol 1,200 base pair amplicon scheme using the

RBK110.96 rapid library preparation kit, and sequenced on a
GridION Mk1. As anticipated, the rapid protocol results in reads
shorter than the amplicon length and so we saw no benefit as either a
filter to balance barcodes or the speed at which amplicons reached
completion Supplementary Figures S8A–C, S9. This experiment was
run in triplicate.

Overall, applying adaptive sampling to ARTIC SARS-CoV-
2 sequencing reveals the fundamental challenges of enriching
short material. Reads must be long enough to benefit from time
saved by rejecting unwanted reads. Effectively this application is
more of a simple filter to remove unnecessary excess reads with
minimal enrichment benefits. Longer read lengths would improve
enrichment capabilities, but are less useful for viral amplicon
sequencing due to the risk of drop out. In the future, as flow cell
yield increases, and these features become available on the
PromethION, this approach will enable dynamic adjustment of
yields obtained from individual samples in barcoded libraries.
The model presented here relies on real-time analysis of the data
obtained to determine if an experimental objective has been
achieved. Any method that does not consider the final data risks
bias as a result of unexpected read length distribution differences
between barcoded samples.

4 Conclusion

We demonstrate that by reducing the run time for a SARS-
CoV-2 sequencing run using real-time analysis to calculate the
best stopping point, it is possible to balance flow-cell health and
time to answer while minimising any information loss.
Significant time savings are possible using this approach; this
has previously been described as “Run Until”, a method described
by Oxford Nanopore Technologies but to date, not widely used.
We show that stopping a run at the earliest point where sufficient
data are available does not negatively affect subsequent
downstream analysis. In addition, Read Until provides further
benefits to a SARS-CoV-2 sequencing run, by reducing the
number of unnecessary reads in the analysis, reducing the
time taken to complete individual genomes and focusing
sequencing capacity on incomplete samples. Real-time analysis
in conjunction with adaptive sampling demonstrates powerful
balancing of amplicon coverage on up to 96 samples, even
providing limited enrichment in some cases. In order for this
method to work, amplicons must be sufficiently long. Whilst the
current maximum barcode number is 96, we anticipate this
approach being able to handle many more samples.

Data availability statement

The original contributions presented in the study are publicly
available. Source code and documentation is available at https://
github.com/LooseLab/minotourapp and https://github.com/LooseLab/
swordfish Supplementary data are available from https://github.com/
LooseLab/artic_minotour_analyses.

FIGURE 7
Overlapped runs in our second experiment (6 h of sequencing)
marking the time at which a barcode reached 90% of amplicons at
20×. It is worth noting the increased performance of 200× is likely due
to the increased yield, as this was the first run to go on. Time
saved is considered to be points for a run that are shifted left of their
equivalents on the y-axis. Any points above the Control run (at the
same time) are considered as extra barcodes recovered.
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