564 research outputs found

    On the quantization of the N=2 supersymmetric non linear sigma model

    Full text link
    A method for quantizing the bidimensional N=2 supersymmetric non-linear sigma model is developed. This method is both covariant under coordinate transformations (concerning the order relevant for calculations) and explicitly N=2 supersymmetric. The OPE of the supercurrent is computed accordingly, including also the dilaton. By imposing the N=2 superconformal algebra the equations for the metric and dilaton are obtained. In particular, they imply that the dilaton is a constant.Comment: 16 page

    Plastically-Induced Volume Deformation of Nanocrystalline α-Fe with a '110' Columnar Structure

    Get PDF
    Volume changes accompanying the plastic deformation at 300 K of nanocrystalline samples of α-Fe with a columnar grain structure possessing a ⟨11¯0⟩ random fiber texture has been obtained from molecular dynamics (MD) simulations. The samples were strained in tension along the common axial direction of the columnar grains. After removal of the elastic volume change, the evolution of plastic volume strain was obtained. Small but non-negligible volume dilations or contractions are observed depending on size (samples of very small grain size show volume contraction). The rate of volume change is high during the first 10% plastic deformation and continues at a low pace thereafter; the first 10% deformation represents a transient in the stress–strain behavior too. The complex behavior observed is reasonably explained by the superposition of contributions from different plastically-induced structural changes to the mass density change: Mainly from changes of grain size, grain boundary structure, dislocation density and density of point-defects. The results are of interest for the development of crystal plasticity theories not restricted by the volume conserving assumption

    Factorization and Discrete States in C=1 Superliouville Theory

    Get PDF
    We study the discrete state structure of c^=1\hat c=1 superconformal matter coupled to 2-D supergravity. Factorization properties of scattering amplitudes are used to identify these states and to construct the corresponding vertex operators. For both Neveu-Schwarz and Ramond sectors these states are shown to be organized in SU(2) multiplets. The algebra generated by the discrete states is computed in the limit of null cosmological constant.Comment: 23 pages, revtex, CNEA-CAB-92-036 and UPRF-92-35

    Extended geometry and gauged maximal supergravity

    Get PDF
    We consider generalized diffeomorphisms on an extended mega-space associated to the U-duality group of gauged maximal supergravity in four dimensions, E_7. Through the bein for the extended metric we derive dynamical (field-dependent) fluxes taking values in the representations allowed by supersymmetry, and obtain their quadratic constraints from gauge consistency conditions. A covariant generalized Ricci tensor is introduced, defined in terms of a connection for the generalized diffeomorphisms. We show that for any torsionless and metric-compatible generalized connection, the Ricci scalar reproduces the scalar potential of gauged maximal supergravity. We comment on how these results extend to other groups and dimensions.Comment: 41 pages. v2,v3: minor changes and references adde

    A class of non-supersymmetric orientifolds

    Get PDF
    We study type IIB orientifolds on T^{2d}/Z_N with supersymmetry broken by the compactification. We determine tadpole cancellation conditions including anti-branes and considering different actions for the parity Omega. Using these conditions we then obtain the spectrum of tachyons and massless states. Various examples with N even correspond to type 0B orientifolds.Comment: 49 pages, Late

    On Susy Standard-like models from orbifolds of D=6 Gepner orientifolds

    Full text link
    As a further elaboration of the proposal of Ref. [1] we address the construction of Standard-like models from configurations of stacks of orientifold planes and D-branes on an internal space with the structure (Gepnermodel)c=6×T2/ZN{(Gepner model)^{c=6} \times T^2}/Z_N. As a first step, the construction of D=6 Type II B orientifolds on Gepner points, in the diagonal invariant case and for both, odd and even, affine levels is discussed. We build up the explicit expressions for B-type boundary states and crosscaps and obtain the amplitudes among them. From such amplitudes we read the corresponding spectra and the tadpole cancellation equations. Further compactification on a T^2 torus, by simultaneously orbifolding the Gepner and the torus internal sectors, is performed. The embedding of the orbifold action in the brane sector breaks the original gauge groups and leads to N=1 supersymmetric chiral spectra. Whenever even orbifold action on the torus is considered, new branes, with worldvolume transverse to torus coordinates, must be included. The detailed rules for obtaining the D=4 model spectra and tadpole equations are shown. As an illustration we present a 3 generations Left-Right symmetric model that can be further broken to a MSSM model.Comment: 40 pages, 2 figures, added references, table 3 correcte

    Exceptional String: Instanton Expansions and Seiberg-Witten Curve

    Full text link
    We investigate instanton expansions of partition functions of several toric E-string models using local mirror symmetry and elliptic modular forms. We also develop a method to obtain the Seiberg--Witten curve of E-string with arbitrary Wilson lines with the help of elliptic functions.Comment: 71 pages, three Wilson line

    Particle models from orientifolds at Gepner-orbifold points

    Full text link
    We consider configurations of stacks of orientifold planes and D-branes wrapped on a non trivial internal space of the structure {(Gepner model)^{c=3n} x T^{2(3-n)}}/Z_N, for n=1,2,3. By performing simple moddings by discrete symmetries of Gepner models at orienti fold points, consistent with a Z_N orbifold action, we show that projection on D-brane configurations can be achieved, generically leading to chiral gauge theories. Either supersymmetric or non-supersymmetric (tachyon free) models can be obtained. We illustrate the procedure through some explicit examples.Comment: 36 pages, no figures Corrected sign of eq. 6.26 references added, minor correction

    Neutrino Majorana Masses from String Theory Instanton Effects

    Get PDF
    Finding a plausible origin for right-handed neutrino Majorana masses in semirealistic compactifications of string theory remains one of the most difficult problems in string phenomenology. We argue that right-handed neutrino Majorana masses are induced by non-perturbative instanton effects in certain classes of string compactifications in which the U(1)BLU(1)_{B-L} gauge boson has a St\"uckelberg mass. The induced operators are of the form eUνRνRe^{-U}\nu_R\nu_R where UU is a closed string modulus whose imaginary part transforms appropriately under BLB-L. This mass term may be quite large since this is not a gauge instanton and ReURe U is not directly related to SM gauge couplings. Thus the size of the induced right-handed neutrino masses could be a few orders of magnitude below the string scale, as phenomenologically required. It is also argued that this origin for neutrino masses would predict the existence of R-parity in SUSY versions of the SM. Finally we comment on other phenomenological applications of similar instanton effects, like the generation of a μ\mu-term, or of Yukawa couplings forbidden in perturbation theory.Comment: 40 pages, 4 figures (v2: added references, small corrections)(v3: minor corrections

    Brane-Antibrane Inflation in Orbifold and Orientifold Models

    Get PDF
    We analyse the cosmological implications of brane-antibrane systems in string-theoretic orbifold and orientifold models. In a class of realistic models, consistency conditions require branes and antibranes to be stuck at different fixed points, and so their mutual attraction generates a potential for one of the radii of the underlying torus or the 4D string dilaton. Assuming that all other moduli have been fixed by string effects, we find that this potential leads naturally to a period of cosmic inflation with the radion or dilaton field as the inflaton. The slow-roll conditions are satisfied more generically than if the branes were free to move within the space. The appearance of tachyon fields at certain points in moduli space indicates the onset of phase transitions to different non-BPS brane systems, providing ways of ending inflation and reheating the corresponding observable brane universe. In each case we find relations between the inflationary parameters and the string scale to get the correct spectrum of density perturbations. In some examples the small numbers required as inputs are no smaller than 0.01, and are the same small quantities which are required to explain the gauge hierarchy.Comment: 30 pages, 2 figures. Substantial changes on version 1. New cosmological scenarios proposed including the dilaton as the inflaton. Main conclusions unchange
    corecore