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Abstract: Finding a plausible origin for right-handed neutrino Majorana masses in

semirealistic compactifications of string theory remains one of the most difficult prob-

lems in string phenomenology. We argue that right-handed neutrino Majorana masses are

induced by non-perturbative instanton effects in certain classes of string compactifications

in which the U(1)B−L gauge boson has a Stückelberg mass. The induced operators are of

the form e−UνRνR where U is a closed string modulus whose imaginary part transforms

appropriately under B − L. This mass term may be quite large since this is not a gauge

instanton and ReU is not directly related to SM gauge couplings. Thus the size of the

induced right-handed neutrino masses could be a few orders of magnitude below the string

scale, as phenomenologically required. It is also argued that this origin for neutrino masses

would predict the existence of R-parity in SUSY versions of the SM. Finally we comment

on other phenomenological applications of similar instanton effects, like the generation of

a µ-term, or of Yukawa couplings forbidden in perturbation theory.
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1. Introduction

In recent years our experimental knowledge about neutrino masses has substantially im-

proved. The evidence from solar, atmospheric, reactor and accelerator experiments indi-

cates that neutrinos are massive. The observed structure of masses and (large) mixings

of neutrinos is quite peculiar and different from their charged counterparts. The simplest

explanation for the smallness of neutrino masses is the celebrated see-saw mechanism [1]. If

there are right-handed neutrinos νa
R with large Majorana masses MM and standard Dirac

masses MD, the lightest eigenvalues have masses of order

mν '
M2

D

MM
. (1.1)

which are of order the experimental results for MD of order of standard charged leptons

and MM ∝ 1010 − 1013 GeV.

Dirac masses are expected to be given by standard Yukawa couplings so from this point

of view they are tied down to the usual flavor problem of the SM, the not yet understood

structure of fermion masses of mixings. On the other hand the origin of the large Majorana
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Figure 1: Instanton induced right-handed neutrino Majorana mass term.

masses for right-handed neutrinos is even more mysterious. A natural setting for such

masses seems to be left-right extensions of the SM like SO(10) unification. However in this

case the appropriate Higgs fields leading to Majorana masses have dimension 126, making

the models unattractive. Alternatively one may resort to non-renormalizable couplings to

16-plets of Higgs fields, but in SUSY models this generically breaks R-parity spontaneously,

giving rise to Baryon- and Lepton-number violation (and hence fast proton decay) unless

one invokes extra protecting symmetries.

The situation for Majorana masses in the case of string theory is worst (for a recent

discussion see e.g. [2] and references therein) because there is less freedom to play around

with models. One of the reasons is that Higgs fields with the appropriate quantum numbers

to couple to the νRνR bilinears at the renormalizable level do not appear in any of the

semirealistic models constructed up to now. Although such couplings may appear at the

non-renormalizable level, it is still typically problematic to obtain them without at the same

time inducing (at least in the SUSY case) dangerous B/L-violating couplings. We think

it is fair to say that there is at present no semirealistic model in which a large Majorana

mass for the right-handed neutrinos appears in a natural way.

In this paper we present an elegant mechanism for the generation of right-handed

neutrino masses in string theory. We claim that, in a (presumably large but) restricted

class of string compactifications with semirealistic SM or MSSM light spectrum, there exist

string theory instanton effects which induce a Majorana mass term for the right-handed

neutrino. They are of the form

e
− 1

g2(U) MString cabν
a
Rνb

R (1.2)

The instanton effect is depicted in figure 1. Here U denotes a set of string moduli, on

which the strength g2(U) of the non-perturbative effect depends. Here g2 is not directly

related to the SM gauge couplings so that these masses may be quite big although naturally

suppressed with respect to the string scale MString. A crucial ingredient for the mechanism
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to work is that the model should contain a gauged B − L U(1) symmetry beyond the SM

gauge group, whose gauge boson gets a Stückelberg mass by combining with some scalar

modulus field (e.g., a RR-scalar in Type II compactifications). Then under some conditions

to be discussed below, certain (non-gauge) instanton effects analogous to those discussed

in [3, 4] give rise to a right-handed Majorana mass term of the above form.

As we said, it is important that U(1)B−L gets a Stückelberg mass. It is a familiar

fact in string models that U(1) gauge fields with triangle anomalies canceled by the Green-

Schwarz mechanism get Stückelberg masses. On the other hand, as emphasized in [5] (see

also [6]) anomaly-free U(1)’s like U(1)B−L may also get Stückelberg masses, also by B ∧F

couplings to suitable 2-form fields. For instance, a class of SM-like compactifications in

which U(1)B−L gets a Stückelberg mass was provided in [5], based on models of intersecting

D6-branes on an orientifold of type IIA on T 2 × T 2 × T 2.1 In this paper we use analogous

examples to illustrate explicitly that (non-gauge) euclidean D2-brane instantons can give

rise to Majorana mass terms as above.

On the other hand the mechanism is quite general and works in complete analogy in

other string compactifications with D-branes (including non-geometric CFT compactifica-

tions like the models in [7]), or even in heterotic compactifications with U(1) bundles. A

difference in the heterotic case is that the effects can originate from world-sheet instantons,

and are hence tree level in gs (and non-perturbative in α′).

This paper is organized as follows. In section 2 we lay down the general idea of

generating Majorana mass terms via non-perturbative instanton effects in string theory.

In section 2.1 we motivate the proposal, and in section 2.2 we describe the instanton

induced operator, its symmetry properties, and the microscopic mechanism in which it

is generated. In section 2.3 we discuss some additional general aspects of the mechanism.

Section 3 provides an explicit example of a semirealistic string theory D-brane model, where

Majorana mass terms arise from D2-brane instantons. Section 4 discusses the use of similar

non-perturbative instanton effects in generating other interesting operators, in particular

the µ-term in supersymmetric models, or Yukawa couplings forbidden in perturbation

theory. Section 5 contains our final comments.

Appendices contain technical details and additional examples. Appendix A describes

instanton induced operators for completely general D-branes models (including type IIB

with magnetized branes, D-branes at singularities, or even non-geometric CFT compactifi-

cations), and for heterotic models. Appendix B contains an additional class of semirealistic

models allowing for instanton induced Majorana mass terms, while appendix C contains

examples of a semirealistic SUSY model allowing for an instanton induced µ-term.

As this paper was ready for submission, ref. [8] appeared, which also discusses non-

perturbative instanton effects in semirealistic string models.

1These models are non-supersymmetric but a number of N = 1 SUSY models with MSSM-like spectrum

in which U(1)B−L gets a Stückelberg mass were reported in [7].
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2. The general scheme

2.1 General remarks

The discussion of the physics of neutrino masses in string models should clearly be carried

out within the setup of semi-realistic string constructions reproducing structures close

to the (possibly supersymmetric) Standard Model. It is interesting to point out that the

presence of right-handed neutrinos is a quite generic feature within this class. For instance,

in type II compactifications with D-branes, right-handed neutrinos arise from open strings

stretched between two stacks of U(1) branes. They also appear in heterotic constructions

with U(1) bundles, but for concreteness we center our discussion on D-brane models.

The difficulty in obtaining Majorana masses for the right-handed neutrinos is manifest

in this setup, since these fields carry non-trivial U(1) charges. Typically these U(1) gauge

bosons become massive, by mixing with a RR closed string modulus, but the symmetries

remain as global symmetries exact in perturbation theory. Hence it is natural to consider

the corresponding non-perturbative effects, namely D-brane instantons, as the source for

the corresponding terms.

The appearance of non-trivial field theory operators due to non-perturbative instanton

effects is similar to the appearance of ’t Hooft operators from gauge theory instantons in

theories with mixed U(1) anomalies. Namely, the operator arises from path integrating

over zero modes of the instanton. However, in our setup there are important differences

with respect to the field theory discussion. First and most importantly, U(1) symmetries

are actually gauged in string theory (although as mentioned, it is crucial that the U(1)

under which the Majorana mass term is charged becomes massive by coupling with a RR

modulus). This implies that the exponential instanton amplitude in 1.2 should transform

by a phase which cancels the transformation of the Majorana mass operator, yielding the

instanton amplitude gauge-invariant. Secondly, the relevant instanton is not a gauge theory

instanton. This has the nice consequence that the exponential factor need not lead to a

large suppression, since it is not related to any SM gauge coupling.

The general description of D-brane instantons, their structure of fermionic zero modes,

and the effective operators they induce, is carried out in complete generality in appendix A

(in the absence of orientifold planes). It also contains the corresponding discussion for

heterotic models.

In the coming sections we apply this kind of analysis, including orientifold planes, to

the particular case of generating right-handed neutrino Majorana mass terms from string

theory instantons, in the particular setup of type IIA models of intersecting D6-branes. It

is however straightforward to rephrase the discussion in terms of other D-brane models or

of heterotic compactifications.

2.2 Instantons and the right-handed neutrino Majorana mass operator

As we said, in order to discuss right-handed neutrino masses we need to work in the context

of some semirealistic class of models with quark/lepton generations. For definiteness we

are going to present our discussion in the context of type IIA orientifolds with D6-branes
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wrapping intersecting 3-cycles [9, 10] (for reviews see [11]). In this case the relevant instan-

tons are D2-instantons wrapping 3-cycles on the compact space2 [20]. As mentioned above,

the discussion in this section is a particular application (including orientifold planes) of the

general discussion in appendix A.

Let us consider stacks of D6-branes a, b, c and d wrapping 3-cycles Πa, Πb, Πc and Πd

on the CY orientifold, along with their orientifold images, denoted a∗, b∗, c∗, d∗ branes.

Let us denote their multiplicity by (Na, Nb, Nc, Nd). In the literature there are two main

classes of semirealistic string models, with the chiral content of just the (possibly super-

symmetric) Standard Model. They differ in the realization of the SU(2)L gauge factor

of weak interactions, either as coming from a U(2) in two overlapping D6-branes away

from O6-planes (Nb = 2) [5], or from an USp(2) group from one D6-brane (Nb = 1) over-

lapping with its orientifold image on top of and O6-plane [24]. The gauge group will be

SU(3) × SU(2)×U(1)a ×U(1)c × U(1)d, with an additional Abelian U(1)b in the first case.

This gauge group includes that of the SM.

In order to have the chiral fermion spectrum of the SM one has to ensure that the branes

intersect the appropriate number of times. Thus e.g. left-handed quarks will come from

the intersections of a and b, b∗ branes and right-handed quarks from the intersections of a

and c, c∗ branes. Right-handed neutrinos will come from intersections of c and d∗ branes

(as discussed above, their charges under the U(1) symmetries forbid Majorana mass terms

in perturbation theory, although can be generated non-perturbatively as discussed below).

A number of models of this type, with the SM gauge group and chiral spectrum, have been

constructed in the last few years, and an explicit toroidal example will be described in the

next section. An important point concerning the models we focus on is that they have the

chiral matter content of exactly the SM. This implies that the discussion of global U(1)

symmetries and their anomalies is exactly as in the Standard model. For reference, the

chiral fields and their U(1) charges in our models are shown in table 1.

The U(1) generators Qa, Qc, Qd have interesting interpretations as SM global sym-

metries. For instance 1
3Qa corresponds to baryon number QB, while Qd corresponds to

(minus) lepton number QL, and Qc to the U(1)R generator QR of left-right symmetric

models. Since U(1)b is not relevant in our discussion (and moreover is often absent in

many interesting models) we do not include it in our discussion (see appendix B for models

with U(1)b). Note that U(1)B , U(1)L and U(1)R are all tree-level symmetries of the SM

(with right-handed neutrinos). There are three interesting orthogonal linear combinations

2One could make an analogous discussion for orientifold compactifications of type IIB theory with

D(2p+1)-branes, like type I models with magnetized D9-branes [12, 9, 13], compactifications with D3- and

D7-branes [14], models of D-branes at singularities [15 – 17], or non-geometric constructions like orientifolds

of Gepner models [18, 19, 7]. The microscopic description of the corresponding D-brane instanton changes,

but the physics of the four-dimensional theory remains identical. Also, one can make a similar discussion

in the heterotic side with U(1) bundles. As discussed in appendix A, in the heterotic the relevant operator

could be induced simply by world-sheet instantons (hence tree-level in gs and non-perturbative in α′).
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that one can form

Qanom = 3Qa − Qd = 9QB + QL

Y =
1

6
Qa −

1

2
Qc +

1

2
Qd =

1

2
(QB−L − QR) (2.1)

Y ′ =
1

3
Qa + Qc + Qd = QB−L + QR (2.2)

The symmetry generated by Qanom is anomalous (with anomaly canceled by the Green-

Schwarz mechanism), while Y and Y ′ (equivalently U(1)B−L and U(1)R) are anomaly

free. The generator Y corresponds to the standard hypercharge, hence it should remain

massless in order to have a realistic model. Finally, the generator Y ′ is an extra anomaly-

free symmetry, to which, by a slight abuse of language, we refer to as the B−L symmetry. It

is crucial for our mechanism to work that this generator, even though it is non-anomalous,

becomes massive by a Stückelberg coupling.

As we have argued, Majorana mass terms for right-handed neutrinos are forbidden in

perturbation theory by the U(1)Y ′ and U(1)anom symmetries, but can be generated non-

perturbatively as in (1.2) by non-perturbative instanton effects. Since the scalars making

the U(1)’s massive are obtained from the RR 3-form integrated over 3-cycles, the relevant

instantons are euclidean D2-branes wrapped on 3-cycles. Let us consider one such instanton

corresponding to a D2-brane M (from Majorana) wrapping a 3-cycle ΠM in the compact

space, and derive the constraints that it must satisfy to lead to operators of the form

e−SD2 νRνR (2.3)

Let us postpone for the moment the discussion of how the instanton generates the right-

handed neutrino Majorana mass operator, and consider what are the symmetry properties

of such an instanton amplitude. The right-handed neutrino Majorana mass bilinears νRνR

have charge 2 under both U(1)B−L and U(1)R symmetries, and are neutral under hyper-

charge (and of course baryon number). The corresponding transformations under the U(1)

gauge symmetries should be canceled by a corresponding transformation of the exponen-

tial prefactor. This is the case if the imaginary part of the instanton action is given by

an scalar field which shifts under the U(1) symmetry in the appropriate way. Namely, as

already mentioned, for the mechanism to work it is necessary that the relevant U(1) gets

a Stückelberg mass due to a B ∧ F coupling to a closed string field.

Let us consider the general pattern of scalar shifts under the U(1)’s. Introduce the

labels A,B, . . . for the different brane stacks, and their corresponding U(1) gauge symme-

tries. The 3-cycles ΠA on which the D6A-brane wrap admit a decomposition in a basis

{Cr} of homology 3-cycles

ΠA =
∑

r

pAr Cr (2.4)

As discussed around (A.6), the coupling of the D6B-branes (and their orientifold images

B∗) to the RR scalars ar (obtained by integrating the RR 3-form over the 3-cycle Dr dual

to Cr) implies that under AB → AB + dΛB , the scalars shift as

ar → ar + NB ( pBr − pB∗r )ΛB (2.5)

– 6 –
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The action of the D2-brane instanton is given by DBI+ CS action, with the latter being

responsible for its coupling to the RR scalars. Namely

Im SD2 =
∑

r

cr ar = aM (2.6)

(for supersymmetric D2-branes, the complete action can be expressed holomorphically in

terms of the complex structure moduli). Using (2.5) this quantity shifts under general U(1)

gauge transformations by the amount

−
∑

r

cr

∑

A

NA ( pAr − pA∗r )ΛA = −
∑

A

NA ( IMA − IMA∗ )ΛA (2.7)

where IMA = ΠM · ΠA is the intersection number, and similarly for IMA∗ . Hence the

exponential amplitude for the instanton transforms as

e−SD2 → exp (−i
∑

A

NA ( IMA − IMA∗ )ΛA ) eSD2 (2.8)

We thus have that for the exponential factor in (2.3) to cancel the transformation of

the Majorana mass term, the intersection numbers of the D2-brane instanton and the

background D6-brane 3-cycles must satisfy3

IMa − IMa∗ = IMb − IMb∗ = 0 ; IMc − IMc∗ = IMd − IMd∗ = 2 (2.9)

Let us now consider the precise microscopic mechanism by which such an instanton gener-

ates the Majorana mass term insertion. In the presence of the D2-brane instanton, there

are open strings stretching between the D2- and the background D6-branes. Quantization

of these open strings shows that they lead to chiral fermions localized at the intersections

between the D2- and the D6-branes. These are fermion zero modes of the instanton, over

which one should integrate. For an instanton with the intersection numbers (2.9), we find

two fermionic zero modes of each chirality, denoted αi, γi, i = 1, 2 at the intersections of

the D2-instanton and the d, c D6-branes carrying U(1)R and U(1)L gauge fields.

These fermion zero modes have Mc-cd∗-d∗cubic couplings involving the D6-D6 fields

in the cd∗ sector, namely the right-handed neutrino multiplets, of the form

Lcubic ∝ dij
a (αiν

aγj) , a = 1, 2, 3 (2.10)

The coupling arises via a world-sheet disk amplitude, as shown4 in figure 2.

3 In addition, if any extra D6-brane X with U(n) group is present beyond those of the SM, one should also

impose IMX − IMX∗ = 0 in order for the instanton-induced operator to be gauge invariant. See discussion

in section 2.3
4We hope that the appearance of two kinds of instantons (the D2-brane instanton inducing a non-

perturbative gs correction in the 4d effective action, and the world-sheet instanton, inducing an α′ effect

on the D2-brane action) in the present IIA setup does not lead to confusion. Moreover, the cubic coupling

arises as a pure α′ tree-level effect in other D-brane constructions (namely in type IIB models).
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Figure 2: World-sheet disk amplitude inducing a cubic coupling on the D2-brane instanton action.

The cubic coupling involves the right-handed neutrinos lying at the intersection of the c and d∗

D6-branes, and the two instanton fermion zero modes α and γ from the D2-D6 intersections.

Upon integration over the fermion zero modes, the complete D2-brane instanton am-

plitude contains the additional contribution
∫

d2α d2γ e−d
ij
a (αiν

aγj) ∝ −νaνb

∫

d2αd2γ αiαjγkγl d
ik
a djl

b = νaνb ( εijεkld
ik
a djl

b )

(2.11)

giving rise to bilinears in the neutrino multiplets in the 4d effective action. Notice the

role of the conditions (2.9) in both pieces of the instanton amplitude (2.3). It determines

the number of fermion zero modes, and their charges, and hence the transformation of

the monomial in the charged D6-D6 fields. On the other hand, it determines the amount

by which the exponent SD2 shifts. The cancellation between the transformations of both

pieces is a particular case of the self-consistency of these amplitudes, discussed in general

in appendix A.

As we have tried to emphasize, the mechanism is rather general, and we only need to

have a semirealistic compactification with the following ingredients:

1) The 4d theory should have the chiral content of the SM and additional right-handed

neutrinos. There should be a gauged U(1)B−L gauge symmetry beyond the SM, under

which the right-handed neutrinos are charged.

2) The U(1)B−L gauge boson should have a Stückelberg mass from a B ∧ F coupling.

3) The compact manifold should admit D2-instantons yielding the two appropriate

zero modes transforming under U(1)L and U(1)R (but no other symmetries in the theory)

to yield neutrino bilinears.

Then the appropriate Majorana mass term will generically appear (see section 2.3 for

some additional discussion on more detailed conditions on the instantons).

Note that the e−SD2 semiclassical factor will provide a suppression factor for this

operator, but this suppression need not be large,5 since in general the field U is not directly

5One may worry that, if the exponential factor is not small, multiwrapped instantons may contribute
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related to the SM gauge coupling constants. Indeed, it is easy to see that U cannot appear

in the gauge kinetic function for the SM gauge fields. The reason is that U transforms with

a shift under an anomaly free U(1). If it also had couplings to the F ∧ F SM gauge field

operators a gauge anomaly would be created, which cannot be true for an anomaly-free

gauge interaction. Thus U cannot appear in the SM gauge kinetic functions and hence

there is no phenomenological constraint on the value of ReU . Thus the induced Majorana

mass for right-handed neutrinos may be only a few order of magnitudes below the string

scale, in agreement with phenomenological requirements. Note that in general a flavour

structure will appear depending on the model dependent coefficients dij
a .

An important comment concerning discrete symmetries is in order. The mentioned

instanton effects leading to the operator (2.3) break the U(1)B−L continuous symmetry.

Notice however that a Z2 group generated by exp(iπQB−L) remains unbroken (i.e. exp(-U)

has lepton charge -2). On the other hand it is well known that within the MSSM such a

discrete Z2 symmetry is equivalent to R-parity [25], the symmetry which guarantees the

absence of dimension four operators violating Baryon and Lepton numbers in the MSSM.

Then within the present scheme the existence of R-parity is automatic.

The present mechanism may be implemented in a way consistent with SU(5) unifi-

cation. The idea is having a SU(5) × U(1)Z model with three chiral matter generations

including 3 right-handed neutrinos, i.e.

3(101 + 5̄−3 + 15) (2.12)

It is easy to check that the U(1)Z is anomaly-free generation by generation.6 An instanton

with an action whose imaginary part X transforms under U(1)Z like

X −→ X + 10ΛZ (2.13)

would generate the operator e−Xνi
Rνj

R, which is invariant under the gauge symmetry. It

would be interesting to have some concrete SU(5) example within string theory where this

could be implemented.

2.3 Role of supersymmetry and additional zero modes

In our previous discussion we have focused on the relevant properties of the instanton to

yield the effect we are interested in. These are essentially based on symmetry arguments,

and topological properties. In particular, the previous analysis ignores the discussion of

other features, like the role of supersymmetry, the possible presence of additional instanton

zero modes, etc. This section is devoted to filling this gap.

with comparable strength, leading to a breakdown of the instanton expansion. However, the zero mode

structure of the instanton is controled by the intersection numbers of the overall cycle class, thus ensuring

that only the single instanton we discuss contributes.
6In fact one has U(1)Z = U(1)Y + (5/2) U(1)Y ′ , with U(1)Y ′ the massive anomaly-free U(1). Note also

that the charge assignments are compatible with embedding the SU(5)×U(1)Z into SO(10). However, this

enhancement would not be consistent with our mechanism, which requires the existence of a Stückelberg

mass term for the relevant U(1). Hence, after the instanton effect is taken into account, only the SU(5)×Z2

symmetry would be realized at low energies, with Z2 being R-parity in the SUSY case.
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The role of supersymmetry. As with most physical effects in string theory compact-

ifications, instanton corrections have usually been described in the supersymmetric setup.

Indeed, beyond the usual advantages of ensuring stability of the vacuum, and that the

wrapped brane is volume minimizing and thus a stationary point of the path integral,

N = 1 supersymmetry provides a useful bookkeeping which facilitates the classification of

the spacetime operators induced by the instanton. For instance, instanton corrections to

the spacetime superpotential arise from instantons with two fermionic zero modes, which

soak up the integration over half the superspace Grassman variables. These are usually

generated by D-brane or world-sheet instantons, wrapped on rigid cycles, and preserving

half of the supersymmetries. This ensures that the only zero modes are the Goldstinos of

the two supersymmetries broken by the instanton, so that it generates a superpotential

coupling.

However, it is clear that instanton effects exist in non-supersymmetric theories as

well. Essentially the basic rule is that an instanton with a number of fermion zero modes

leads to spacetime interactions with the appropriate number of spacetime fields to satu-

rate the amplitude. Given this, we understand that our previous discussion of generation

of Majorana mass terms from instantons can be carried out both in supersymmetric and

non-supersymmetric string compactifications. In fact, our explicit examples in the com-

ing sections are non-supersymmetric. In any event, it should be clear that a completely

analogous analysis can be carried out for supersymmetric compactifications.

Additional zero modes. A physically more relevant issue is that in general an instanton

may carry more zero modes than the minimum we require. More specifically, one may

have instantons with the right topological intersection numbers, but with additional zero

modes associated to deformations of the wrapped 3-cycle, (of for instantons that happen to

break all the supersymmetries of a supersymmetric background, and hence have additional

Goldstinos). These zero modes are uncharged under the D6-brane gauge factors, and

therefore do not contribute to the structure of the spacetime operator in the charged fields

(but rather to insertions of additional closed string fields). Since these zero modes do not

really affect the Majorana mass term structure, their detailed discussion is ignored in the

present paper.

Such additional zero modes will however be present for the instantons we consider in our

explicit examples. Indeed we present explicit examples in toroidal setups, where the 3-cycles

wrapped by the D2-brane instantons are topologically T 3, hence have three position plus

Wilson line moduli, leading to additional zero modes. This may be considered a drawback,

since as discussed leads to additional closed string field insertions, making the Majorana

mass term structure be part of a higher-dimension operator (in particular, it would not

be a superpotential coupling in supersymmetric cases). These models however illustrate

the robust features in the generation of Majorana mass terms, and can be considered toy

models of more realistic constructions (e.g. on CY threefolds) where instantons without

the additional zero modes may exist.

Moreover, even the discussion of the toroidal setups may be useful by itself, in the fol-

lowing sense. It is well-known that additional bosonic and non-chiral fermionic instanton
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zero modes can be lifted by additional ingredients in the compactification. For instance,

3-form fluxes on type IIB orientifold models can lift certain fermion zero modes on eu-

clidean D3-brane instantons [26] (and consequently, modify the topological conditions for

an instanton to contribute to the superpotential). It is plausible to imagine that the ad-

ditional zero modes in the models we discuss can be lifted by a similar mechanism upon

introduction of a suitable set of fluxes, or generalization thereof (see [27] for a useful related

discussion in the type IIA setup). Notice that in non-supersymmetric cases, this removal

of the additional zero modes also involves stabilization of e.g. the deformation moduli of

the wrapped cycle. This effect can in fact be crucial, since it underlies that fact that the

wrapped brane is an stationary point of the path integral, and can thus be properly refered

to as an instanton.

An additional possible source of additional zero modes is that the D2-brane may in-

tersect other D6-branes beyond those involved in the SM sector. This possibility is fully

encompassed by our general discussion in appendix A. Such additional zero modes would

lead to insertions of new D6-D6 fields in the spacetime effective operator, thus spoiling in

principle the Majorana mass term structure, and in general yielding a higher-dimension

operator, involving hidden sector fields. Nevertheless, the right structure may be recov-

ered if these new fields are allowed to get vevs, etc. Clearly the discussion then becomes

very model-dependent. In our explicit neutrino mass models we will make sure that these

additional zero modes are absent (see footnote 3).

There is one interesting exception to this last paragraph. Certain instantons contain

zero modes arising from equal numbers of intersections between the D2-brane with a given

D6-brane A and its orientifold image A∗, namely IMA − IMA∗ = 0. This leads to zero

modes in the ( M , A) + ( M , A), and are hence vector-like with respect to the U(NA)

gauge symmetry. From the discussion in previous sections, see e.g. 2.8 these zero modes do

not affect the transformation of the exponential factor. Consistently with this, they do not

have any cubic couplings with 4d fields, hence do not contribute insertions to the charged

matter operator. These intersection zero modes are thus particularly inert, and we do not

consider them in our discussion.

Moduli stabilization. We would like to conclude this section with a comment on the

interplay of the wrapped brane instantons and the introduction of additional ingredients

in the compactification, like fluxes. Indeed, since our mechanism involves the use of a

shift for the imaginary part of a closed string modulus, one may fear that it is spoiled by

the introduction of fluxes leading to closed string stabilization. In fact, this is guaranteed

not to be the case. As discussed in [28] the Freed-Witten constraint [29] on the D6-

branes guarantees that the superpotentials generated by the introduction of fluxes are

fully compatible with the shift symmetries induced by the BF couplings due to the D6-

branes. In other words, the modulus involved in the instanton amplitude is not affected

by the flux superpotential, and the shift symmetry is intact.

Amusingly the converse result was shown in [30]. Namely, the Freed-Witten constraint

on the D2-brane instanton guarantees that the superpotential induced by such instantons

is compatible with the scalar shifts implicitly exploited by the fluxes (manifest in their
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description as gaugings of isometries of the scalar moduli space).

The bottomline is that flux stabilization mechanisms and instantons talk to different

sets of moduli, and hence lead to no interference. This gives additional plausibility to

our statements above concerning lifting of additional instanton zero modes, and hence

motivates us to proceed with the construction of explicit models, even in toroidal setups.

3. An intersecting D6-brane example

To make the above described general mechanism explicit, we need semirealistic models

(either supersymmetric or not) in which there is a gauged U(1)B−L symmetry getting a

Stückelberg mass. These are a restricted subset of the semirealistic models in the literature.

To our knowledge, the only models satisfying those requirements are the non-SUSY models

constructed in [5], and a (small) subset of the SUSY CFT orientifolds studied by Schellekens

and collaborators [7]. In particular, there are no examples of toroidal/orbifold N = 1 SUSY

constructions with massive U(1)B−L gauge bosons. In any event, and given the simplicity

of toroidal constructions, our examples here will be analogous to the non-SUSY models

in [5]. As just explained supersymmetry is not a crucial ingredient in our discussion, the

relevant instantons and ’t Hooft operators also exist in non-supersymetric theories. In our

case the relevant operator will be fermionic with a bilinear in right-handed neutrinos. It

should be easy to implement a similar discussion in the supersymmetric models in [7].

As mentioned, ref. [5] provided a family of non-SUSY models with the required char-

acteristics, i.e. SM spectrum and a massive U(1)B−L. They are orientifolds of type IIA on

T 2×T 2×T 2 modded by ΩR, with Ω being world-sheet parity and R the reflection zi → zi of

the three T 2 complex coordinates. There are four Standard Model D6-branes a,b,c,d (and

their orientifold images a∗, b∗, c∗, d∗) in which the SM gauge group lives. The multiplicities

are Na = 3, Nb = 2, Nc = Nd = 1 so that, before some gauge bosons get Stückelberg masses,

the full gauge group is U(3)a×U(2)b×U(1)c×U(1)d. In the present section we will consider

a slightly simpler class of models [31] in which the SU(2)L SM gauge group is realized in

terms of a symplectic group USp(2) rather than a unitary group U(2).7 This is obtained

with Nb = 1 if the corresponding b-brane and its mirror sit on top of an orientifold plane.

Then the initial gauge group is rather SU(3)× SU(2)×U(1)a ×U(1)c ×U(1)d. Here U(1)a
and U(1)d have the interpretation of gauged baryon and (minus)lepton numbers, whereas

U(1)c behaves like the diagonal generator of right-handed weak isospin. Open strings at

the intersections of the D6-branes lead to chiral fermions transforming like bifundamentals

( a, b), and ( a, b) for ab and ab∗ intersections, respectively. The chiral fermion content

reproduces the SM quarks and leptons if the D6-brane intersection numbers are given by

Iab = Iab∗ = 3 ; Iac = Iac∗ = −3

Idb = Idb∗ = −3 ; Icd = −3 ; Icd∗ = 3 (3.1)

with the remaining intersections vanishing. As usual, negative intersection numbers denote

positive multiplicities of the conjugate representation. The spectrum of chiral fermions is

7See appendix B for the analogous discussion for the constructions in [5] which have a U(2)b gauge

group.
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Intersection Matter fields Qa Qc Qd Y Y’ 3Qa − Qd

(ab),(ab*) QL 3(3, 2) 1 0 0 1/6 1/3 3

(ac) UR 3(3̄, 1) -1 1 0 -2/3 2/3 -3

(ac*) DR 3(3̄, 1) -1 -1 0 1/3 -4/3 -3

(bd),(b*d) L 3(1, 2) 0 0 -1 -1/2 -1 1

(cd) ER 3(1, 1) 0 -1 1 1 0 -1

(cd*) νR 3(1, 1) 0 1 1 0 2 -1

Table 1: Standard model spectrum and U(1) charges in the realization in terms of D6-branes with

intersection number (3.1)

shown in table 1. These correspond to three SM quark lepton generations. In addition there

are three right-handed neutrinos νR whose presence is generic in this kind of constructions.

At the intersections there are also complex scalar with the same charges as the chiral

fermions. These are not necessarily massless (since the model may be non-supersymmetric),

but by a judicious choice of the complex structure moduli one can generically avoid the

presence of charged scalar tachyons [5].

One linear combination of the three U(1)’s, i.e.

Y =
1

6
(Qa − 3Qc + 3Qd) (3.2)

corresponds to the hypercharge generator. Another one, (3Qa − Qd) is anomalous (with

anomaly canceled by the Green-Schwarz mechanism) and becomes massive as usual. The

remaining orthogonal linear combination Y ′ is anomaly free and will become massive or not

depending on the structure of the couplings of the U(1)’s to the RR 2-forms in the given

model. As we mentioned, the appearance of a Majorana mass term by our mechanism

necessarily requires that this anomaly-free combination becomes massive, otherwise the

term is forbidden by unbroken gauge interactions. As discussed in the previous section,

in order for such mass terms to be generated there must exist a D2-brane instanton M

with intersection numbers with the SM branes as in eq. (2.9). Taking into account that

the helicities of the α and γ instanton zero modes have to match, this requires either

IMd = 2 ; IMc∗ = −2 ; IMc = IMd∗ = 0 (3.3)

or else

IMc = 2 ; IMd∗ = −2 ; IMd = IMc∗ = 0 . (3.4)

Thus in order to get a model with the SM chiral content and in addition right-handed

Majorana masses both the conditions (3.1) and those above must be verified. The latter

conditions turn out to be rather restrictive in the present setup, and we suspect this to be

valid in more general classes of models.

Let us make the discussion concrete and construct a specific class of models. Consider

type IIA string theory compactified on T 2 × T 2 × T 2, with (xi, yi) parametrizing the ith

T 2. We further mod out by ΩR, where Ω is world-sheet parity and R is the reflection
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Ni (n1
i ,m

1
i ) (n2

i ,m
2
i ) (n3

i ,m
3
i )

Na = 3 (1, 0) (n2
a, 1) (ng,ma)

Nb = 1 (0, 1) (1, 0) (0,−1)

Nc = 1 (n1
c , 1) (1, 0) (0, 1)

Nd = 1 (1, 0) (n2
d,−ng) (1,m3

d)

Table 2: D6-brane wrapping numbers giving rise to a SM spectrum.

of the three compact yi coordinates. We consider D6-branes on factorizable 3-cycles and

denote their wrapping numbers in the three (xi, yi) directions (n1,m1), (n2,m2), (n3,m3).

Consider a set of SM branes with wrapping numbers as shown in table (2). Here n2
a, m3

a,

n1
c , n2

d, m3
d are integers. It is easy to check that indeed these wrapping numbers give rise

to the chiral spectrum of a SM with ng quark/lepton generations. For more generality we

have considered the case with a general number of generations ng.

These models have in principle three U(1) gauge fields. However generically two of

them acquire Stückelberg masses due to the B ∧ F couplings

Bi
2 ∧ 2NAmi

Anj
Ank

AFA , i 6= j 6= k (3.5)

where A labels the D6-brane stacks and i, j, k run through the three 2-tori. The factor

of NA arises from the U(1) normalization, and the factor of 2 arises from the coupling

to the D6-brane and its orientifold image. Recall that in these toroidal models there are

four massless 2-forms Bp
2 , p = 0, 1, 2, 3 arising from integrating the type IIA 5-form over

3-cycles invariant under the orientifold action. For the model in table 2 the non-vanishing

couplings are

B2
2 ∧ 2ng(3F

a − F d)

B3
2 ∧ 2( 3n2

am
3
aF

a + n1
cF

c + n2
dm

3
dF

d ) (3.6)

The RR fields B0
2 and B1

2 have no couplings to the U(1)’s. The existence of these couplings

implies that the scalar fields ai, 4d duals to the 2-forms Bi, transform under U(1) gauge

transformations with a shift

a0,1 → a0,1

a2 → a2 + 2ng(3Λ(x)a − Λ(x)d) (3.7)

a3 → a3 + 6n2
am

3
aΛa(x) + 2n1

cΛc(x) + 2n2
dm

3
dΛd(x)

Note that the ai are the imaginary parts of the complex structure fields U i in the case

of SUSY type IIA orientifolds. There are a number of additional constraints to make

the model realistic and to allow the non-perturbative appearance of right-handed neutrino

Majorana masses:
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(i) There are three U(1)’s and only two RR-scalars, a2 and a3, coupling to them. Hence

necessarily one of the U(1)’s remains massless. In order for the model to be realistic,

the standard hypercharge should be the massless generator. This is the case if

n1
c = n2

am
3
a + n2

dm
3
d. (3.8)

The other two linear combinations (in particular the U(1) relevant for Majorana

masses) are massive.

(ii) In order for the model to be a consistent compactification, RR-tadpoles have to cancel.

Tadpoles cancel in this simple model if

3m3
a = ngm

3
d. (3.9)

In addition one should add (3n2
ang + n2

d − 16) D6-branes (or antibranes, depending

on the sign) along the orientifold plane. They have no intersection with the rest of

the branes and do not modify the discussion in any way.

(iii) Finally, the appearance of Majorana masses requires the existence of a D2-brane

instanton M wrapping a 3-cycle on T 2 × T 2 × T 2 verifying the conditions (3.3)

(conditions 3.4 lead to equivalent physics). For simplicity we focus on factorizable

3-cycles (see section 2.3 for discussion on our viewpoint on the extra zero modes that

arise). It turns out that in this class of models there is a unique factorizable 3-cycle

with the required properties which is given by the wrapping numbers:

M = (n1,m1) (n2,m2) (n3,m3) = (1, 1)

(

n2
a

ng
, 1

)

(1,−m3
a) (3.10)

In addition in order to get (integer) quantized wrapping numbers for the instanton

M , one must have n1
c = 1 and n2

a a multiple of ng.

It is amusing that one can check that in this particular family of models all these

three conditions i)-iii) are possible only for ng = 3, i.e. only for three quark-lepton

generations. This is mostly due to the condition from cancellation of RR-tadpoles.

Although this probably will not be the case for other classes of models, it illustrates

how restrictive the conditions to get Majorana masses may be in particular families of

models. We expect this general lesson to extend to other classes of models. Another

example of this is the number of Higgs multiplets. Pairs of Higgs doublets arise from

open strings stretched between the b and c D6-branes, and the number of pairs is

given by the intersection number of the two stack in the last two complex planes,

namely n1
c in our class. Since the above conditions (in particular wrapping numbers

for the instanton 3-cycle) required having n1
c = 1, they imply the requirement of

having just one pair of Higgs doublets.

Let us verify that the above instanton has the correct transformation properties. The

imaginary part of the action of the D2-brane instanton wrapping this 3-cycle is

Im SD2 =
n2

a

ng
a0 − m3

a a1 −
n2

am
3
a

ng
a2 + a3 (3.11)
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Now it is straightforward to check that the operator

exp

[

−

(

n2
a

ng
a0 − m3

aa1 −
n2

am
3
a

ng
a2 + a3

)]

νi
Rνj

R ; i, j = 1, 2, 3 (3.12)

is gauge invariant under all three U(1)’s, when one takes into account the transfor-

mations (3.8).

As discussed in the previous section, the Majorana mass operator is generated as

follows. At the intersections between the D2-brane instanton 3-cycle with the back-

ground D6-branes there are fermionic zero modes. Let us the denote these modes as

αi, γi for the Mc∗ and Md intersections respectively. These zero modes have cubic

couplings

Lcubic ∝ dij
a (αiν

aγj) , a = 1, 2, 3 (3.13)

which are induced by disk world-sheet instantons. Here νa are the right-handed

sneutrinos and dij
a are coefficients (which in general will also depend on the Kähler

moduli and open string moduli, like standard Yukawas). Upon integration over the

fermion zero modes, one generates a contribution proportional to
∫

d2αd2γ e−d
ij
a (αiν

aγj) ∝ −νaνb

∫

d2αd2γ αiαjγkγl d
ik
a djl

b = νaνb ( εijεkld
ik
a djl

b )

(3.14)

Note that we get bilinears because we have two zero modes of each type α and γ.

The semiclassical contribution to the quantities dij
a may be explicitly computed in these

toroidal models. Indeed these amplitudes are completely analogous to the Yukawa couplings

computed in [24]. In each of the subtori the branes c∗, d and the instanton M intersect

forming triangles. Being in a torus we have in fact a sum over triangles in the covering

space. This computation was performed in [24] and it was found that the amplitudes may

be written as products of Jacobi θ-functions with characteristics. In particular one finds

dij
a =

3
∏

r=1

ϑ

[

δ(r)

φ(r)

]

(κ(r)), (3.15)

where the product goes over the three tori. The dependence on i, j, a is contained in the

arguments which are defined as

δ(r) =
i(r)

I
(r)
Mc∗

+
j(r)

I
(r)
dM

+
a(r)

I
(r)
c∗d

+

(

I
(r)
Mc∗ε

(r)
d + I

(r)
dM ε

(r)
c∗ + I

(r)
c∗dε

(r)
M

)

I
(r)
Mc∗I

(r)
dM I

(r)
c∗d

,

φ(r) =
(

I
(r)
Mc∗θ

(r)
d + I

(r)
dMθ

(r)
c∗ + I

(r)
c∗dθ

(r)
M

)

, (3.16)

κ(r) =
J (r)

α′
|I

(r)
Mc∗I

(r)
dMI

(r)
c∗d|

Here e.g. I
(r)
Mc∗ denotes the intersection number of branes M and c∗ in the r-th torus, and

i(r) labels one particular intersection in each plane r. Note that in our case

I
(1)
Mc∗I

(2)
Mc∗I

(3)
Mc∗ = I

(1)
dM I

(2)
dMI

(3)
dM = 2 (3.17)

I
(1)
c∗dI

(2)
c∗dI

(3)
c∗d = 3. (3.18)
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The J (r) are the complex Kähler moduli for each tori, the ε(r)’s parametrize the position

of each brane in each subtorus and the θ(r) possible Wilson lines. These two degrees of

freedom correspond to open string moduli which may be complexified as

Φ(r)
a = Jε(r)a + θ(r)

a . (3.19)

As discussed in section 2.3, the D2-brane moduli really correspond to instanton zero modes

over which one should in principle integrate. However, our viewpoint is that the present

model should be regarded either as a toy model of an improved setup, like CY compact-

ifications, where instantons without such zero modes exist, or as part of a construction

with additional ingredients, like fluxes, which lift such zero modes. Either viewpoint is

essentially mimicked by considering the D2-brane moduli as fixed numbers in the above

formulae.

Let us provide a geometric picture of the instanton for a particular example. Consider

the case

n2
a = 3 ;n1

c = 1 ;n2
d = −2 ; m3

a = m3
d = 1 ; ng = 3 ; ε = 1 (3.20)

Then the relevant instanton M and branes c∗ and d have wrapping numbers:

M : (1, 1)(1, 1)(1,−1)

c∗ : (1,−1)(1, 0)(0,−1) (3.21)

d : (1, 0)(−2,−3)(1, 1)

Then one can check IdM∗ = IMc = 0 so that there are no vector-like zero modes from

extra intersections. These three 3-cycles are shown in figure 3. Note that they have the

correct number of intersections and also that the expected triangle instanton contributions

are indeed present.

The models discussed in this section come remarkably close to many of the features of

the SM. On the other hand they are not fully realistic. In fact if the torus is factorizable (no

off-diagonal Kahler moduli ) the index dependence of the dij
a factorizes (i.e. dij

a = didad
j)

and the amplitude vanishes due to the contraction with antisymmetric indices in eq. (3.14).

Thus only for non-diagonal Kahler moduli the mechanism may take place. Furthermore,

being non-supersymmetric one expects the vacuum to get unstable unless the models are

supplemented with some extra ingredient like RR/NS fluxes. Still we think they exemplify

in very explicit detail how our proposed mechanism for the generation of right-handed

neutrino Majorana masses works. We leave for the future the detailed study of the flavour

patterns which may arise in this class of models.

4. Other instanton induced superpotentials. The µ-term.

It is clear that this kind of instanton effects may give rise to other interaction terms.

This includes mass terms as well as certain higher dimensional superpotential couplings.

Potentially the most relevant terms are those of dimension smaller than four like the case

of right-handed neutrino masses just mentioned. In the context of the MSSM the only
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Figure 3: The figure shows the D2-brane instanton (continuous line) and the c∗ and d D6-branes

at whose intersections lie the right-handed neutrinos. The instanton zero modes from the D2-D6

open strings are denoted by α and γ. The yellow areas describe (the projections of) the open string

disk inducing a cubic coupling on the D2-brane instanton action.

other (R-parity preserving) mass term which is allowed by SM gauge symmetries is a Higgs

bilinear superpotential, i.e. the µ-term

W = µ HH̄ . (4.1)

One of the mysteries of the MSSM is the understanding of the reason why such a mass

term, which in principle could be as large as the Planck scale, is so small, of the same order

of magnitude of the electroweak scale. This is often called ‘the µ-problem’ [32]. A natural

idea is to assume that such a coupling is forbidden by some U(1) gauge interaction. If such

a a U(1) gets a Stückelberg mass, then an operator of the general form

Wµ = e−SinsHH̄Mstring (4.2)

may be gauge invariant and be induced by some string instanton contribution. The expo-

nential suppression could then perhaps provide a dynamical explanation for the smallness

of the µ-term. The general idea can be described without need of a specific model. We

consider again the case of a general Type IIA CY orientifold with intersecting D6-branes,

although again a similar discussion can be carried out in other string constructions. Con-

sider the case of four stacks of SM branes a, b, c, d (and their mirrors) leading to a general

unitary group U(3)a ×U(2)b ×U(1)c ×U(1)d. The Higgs fields H and H̄ will appear at the

bc and bc∗ intersections, respectively. The bilinear HH̄ has U(1)b charge ±2, depending

on the sign of the intersection number of both branes. Then the µ-term operator explicitly

breaks U(1)b gauge invariance. In general U(1)b is anomalous and gets a Stückelberg mass

as usual. Let us assume for definiteness that the U(1)b charge of the bilinear is −2, and

also that both H and H̄ come only in one copy, as in the MSSM. Then, if a D2-instanton

M exists such that

IMb = −1 IMb∗ = 0 ; IMc = IMc∗ = 1 ; IMx − IMx∗ = 0 (4.3)
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Figure 4: Disk amplitudes contributing cubic couplings between the D2-brane instanton fermion

zero modes αi, γ, σ, and the spacetime Higgs fields H , H . Upon integration over the fermion zero

modes, the induced effective operator is a µ-term.

with x any other brane in the model, then an operator of the required form appears. This

means that there should be a doublet αi of Mb zero modes, and in addition singlet zero

modes γ, σ corresponding to Mc and Mc∗ intersections. There is a cubic coupling of these

modes to the spacetime Higgs fields, of the form

Lcubic ∝ (αH)γ + (αH̄)σ (4.4)

This is mediated by the world-sheet disk instanton amplitudes depicted in figure (4).

Integration over the fermions zero modes gives a contribution proportional to

e−SM

∫

d2αdγdσ e(αH)γ+(αH̄)σ ∝ e−SM HH̄ (4.5)

We will illustrate this possibility in an explicit MSSM-like example in appendix C. It turns

out that if we want to construct an explicit RR-tadpole free SUSY model, extra new D6-

branes beyond the SM ones have to be introduced. Then the actual operator gets multiplied

by a power of hidden sector fields. Still it provides an explicit SUSY example of this idea.

As should be clear, one can apply similar ideas to generate other interesting cou-

plings forbidden in perturbation theory by some massive U(1) symmetry. For instance, the

Yukawa couplings 10 · 10 · 5 in standard SU(5) GUTs, which violates the U(1) symmetry

of U(5) when realized in D-brane models. Or similarly, the quark Yukawa couplings in

D-brane constructions where right-handed quarks are realized as antisymmetric represen-

tations of SU(3). Clearly, non-perturbative effects open up new possibilities for improving

model building prospects of these constructions.

5. Discussion

We have found that neutrino Majorana masses are generated by D-brane instantons in

certain general classes of string compactifications. We have discussed a set of necessary
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conditions for this mechanism to be allowed, like the presence of a massive (although

obviously anomaly-free) U(1)B−L generator. This requirement is non-trivial and in fact it

is not satisfied in most semirealistic constructions to date. Hence those models should be

regarded as not fully realistic in the neutrino sector. The Majorana mass term constraint

thus turns out to be a powerful new ingredient in model building requirements.

Although non-automatic, the requirements are however satisfied by a restricted but

non-trivial subset of models. To our knowledge, only the examples [5] discussed above and

some SUSY models built by Schellekens and collaborators [7] using CFT techniques in Type

II orientifolds have this property. It would be very interesting and important to construct

new models with this property using different string constructions. In the heterotic case

that will require using U(N) gauge bundles for compactification rather than SU(N).

One point to remark is that, even within that class of models, the existence of the

required instanton with the appropriate number of fermionic zero modes is also a strong

constraint. For instance, in our toroidal orientifold example among the large class of three

generation models which one can build with the wrapping numbers of table 2, only those

satisfying the constraints |n1
c | = 1, n2

a = multiple of 3 have the appropriate zero modes to

obtain Majorana neutrino masses. As we saw, this may have a bearing on the possible

number of generations and of Higgs multiplets in this class of models. More generally, we

expect that imposing the existence of the required D2 instanton in generic constructions

may give constraints on the number of generations and/or Higgs multiplets. It should be

interesting to check for those constraints in general models.

The finding of this new source for the generation of Majorana neutrino masses opens

the way to the study of the neutrino sector in string models. As in the case of the masses

and mixings of quarks and charged leptons, they will depend on the details of the string

compactification (brane geometry in the case of an intersecting brane setup). On the other

hand the conditions that we have found for the generation of neutrino masses are topological

in nature and hence are much easier to implement in a systematic search for a string vacuum

consistent with phenomenological data. For example, one may consider the class of CFT

MSSM-like models constructed in [7]. To begin with one should then concentrate on the

limited set of models with a massive U(1)B−L and then look on whether one may find

branes (corresponding to the instantons) with the appropriate intersection numbers (2.9)

with the SM branes. That would single out a direction to go in the search for a fully

realistic MSSM-like model.

As we argued, an additional important aspect of the proposed Majorana mass gener-

ation mechanism is that it is such that a Z2 subgroup of the massive U(1)B−L generator

remains unbroken. In the context of the MSSM this is equivalent to the existence of R-

parity, which guarantees the absence of dimension four operators violating baryon or lepton

number, a crucial ingredient of the MSSM which is imposed by hand in field theory. We

now see that string theory would provide a rationale for the existence of this symmetry

which is connected to the generation of neutrino masses.

String instantons may also give rise to other interesting superpotential terms in the

low effective action. An important example that we have discussed in the text is the Higgs

bilinear, the µ-term in the MSSM. Dimension four operators may also be obtained. For
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example, it is often the case in specific semirealistic D-brane models that some potential

Yukawa coupling is forbidden by some anomalous U(1) symmetry (like e.g. U(1)b). Instan-

ton effects may generate such couplings although the size of those terms will be generically

exponentially suppressed compared to other allowed Yukawa couplings. This may be per-

haps interesting in connection with the generation of hierarchies of quark/lepton masses.

Coming back to neutrino masses, it is clear that obtaining some specific prediction

for the masses and mixings of neutrinos requires the study of concrete models. However

one can argue that for a string instanton generation of neutrino Majorana masses it is

natural to expect large neutrino mixing, having small mixings would be rather surprising.

Indeed, at least from the intuition provided by string intersecting brane models, one may

perhaps understand qualitatively why the mixing among quark flavours given by the CKM

matrix is relatively small. That may happen e.g.if there is some approximate left-right

symmetry in the geometric distribution of D6-branes. The CKM matrix is related to the

unitary matrices which diagonalize the quark masses and the Yukawa couplings depend

on the geometry of the wrapping SM branes. The neutrino Dirac mass matrix MD
ν will

also depend on the geometry of the SM D-branes. However we have seen that the origin

of the right-handed Majorana neutrino mass is totally different, not only depends on the

geometry of some SM branes but also on that of the instanton M generating the coupling.

Since the physically measured light neutrino masses depend on the Dirac neutrino mass

matrix as well as on the right-handed Majorana mass, having both matrices totally distinct

origin in our scheme, no particular correlation is expected which generically implies large

neutrino mixing, as experimentally observed.
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A. String theory instantons and effective operators

A.1 D-brane models

There are many discussions of brane instanton physics in string and M-theory in the litera-

ture (see e.g. [20 – 23] among others). However they usually do not many deal with models

with non-trivial gauge sectors and matter charged under them. Hence, the appearance of

instanton induced operators of the kind we are interested in has not been much discussed,

In this appendix we extend results in [3, 4] and discuss the microscopic mechanism for

euclidean D-brane instantons to generate effective operators involving the charged fields in

a string compactification. The language is completely general, and it is straightforward to

particularize to any compactification (either in type IIA or type IIB) with D-branes. For
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simplicity we ignore orientifold projections, which can be easily incorporated (as done in

the discussion in the main text). Despite of this and as discussed in the main text, we use

supersymmetric language; in any event the relevant instanton physics is independent of

supersymmetry. Also, as discussed in section 2.3, we focus on the relevant instanton zero

modes, ignoring the possible presence of additional ones.

Consider a compactification of type IIA or IIB string theory with D-branes leading to

four-dimensional gauge interactions and charged chiral fermions. This could be a type IIA

compactification with D6-branes on intersecting 3-cycles [9 – 11], a type IIB compactifica-

tion with magnetized D-branes [12, 9, 13], a type IIB model with D-branes at singular-

ities [15 – 17], or even non-geometric compactifications like orientifolds of type II Gepner

models [18, 19, 7]. In fact, since the ingredients are essentially topological, diverse dualities

can be used to draw similar conclusion in other setups, like M-theory on G2 holonomy man-

ifolds, or F-theory on CY fourfold. The case of heterotic models is particularly interesting

and will be discussed in section A.2.

As is by now familiar, we have several stacks, labeled by an index A, of NA D-branes,

denoted DA branes. Each D-brane is characterized by a vector of RR charges ΠA. This

corresponds to the homology charge of the D-brane in geometric compactifications, or to

a suitable generalization in other models. These charge vectors admit a decomposition in

a basis of D-brane charges Cr as follows

ΠA =
∑

r

pAr Cr (A.1)

where pAr are integers. The basis of D-brane charges Cr is associated to a basis of RR

forms in the 4d theory, which in geometric compactification corresponds to cohomology

basis of the internal space (and to suitable generalizations in more general models). By

abuse of language we use Cr to denote the basic D-brane charge and the corresponding

cohomology class (or suitable generalization thereof).

The pAr correspond to the charge of the DA-brane under the rth RR 4-form of the

four-dimensional effective theory. For instance, in geometric compactifications, such 4-

form is given by KK reduction of a suitable RR form of the 10d theory over the basis cycle

associated to Cr. The equations of motion for these 4d 4-forms imply the RR tadpole

cancellation constraints (recall we do not include orientifold planes in the discussion).
∑

A

NA ΠA = 0 (A.2)

The 4d theory contains a gauge symmetry
∏

A U(NA). The AB open string sectors provide

chiral fermions (chiral multiplets in susy cases), with a multiplicity IAB , in bi-fundamental

representations ( A, B), hence with charges +1, −1 under U(1)A, U(1)B . As usual, op-

posite signs of IAB indicate conjugate representations. The multiplicity is determined by

a topological bilinear in the charge vectors

IAB = 〈ΠA,ΠB〉 (A.3)

For type IIA intersecting brane models, this corresponds to the topological intersection

number of the 3-cycle homology classes. For geometric type IIB models with magnetized
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branes, this is the index of the Dirac operator for a fermions coupled to the U(1)A ×U(1)B
bundle (or a suitable generalization to sheaves for lower dimensional branes). For D-branes

at singularities, it is the adjacency matrix of the quiver diagram (which in the large volume

limit corresponds to the just mentioned Dirac index). For abstract CFTs, it is the bilinear

described in [33].

The U(1)A gauge bosons have non-trivial couplings to a set of basic 2-forms Br (asso-

ciated to the classes Cr) in the 4d theory, given by

SBF =
∑

A,r

pAr

∫

4d

Br ∧ tr FA =
∑

A,r

NA pAr

∫

4d

Br ∧ FA (A.4)

where the factor of NA arises from the U(1) generator normalization. This implies that,

upon U(1)B gauge transformations

AB → AB + dΛB (A.5)

the scalar ar, which is the 4d dual to Br, suffers a shift

ar → ar +
∑

B

NB pBr ΛB (A.6)

In geometric compactifications, the scalar ar is obtained by integration over the cycle Dr

dual to Cr of the RR form dual to that leading to Br (and suitable generalizations for

other non-geometric D-brane models).

Some of the U(1)’s with BF couplings are anomalous and this coupling is crucial in

the Green-Schwarz cancellation of anomalies. However, as emphasized in the main text,

we are particularly interested in non-anomalous U(1)’s which nevertheless also have these

BF couplings.

Let us now consider an euclidean D-brane instanton, namely a D-brane, denoted M ,

which is localized in all 4d Minkowski dimensions, and has a RR charge vector ΠM . Just as

for 4d spacetime filling D-branes, this corresponds to an euclidean D2-brane on a 3-cycle on

type IIA geometric models, to a (possibly magnetized) D(2p + 1)-brane on a (2p + 1)-cycle

in geometric type IIB models, or to suitable generalizations in other setups. Expanding

ΠM on the dual basis

ΠM =
∑

r

qM,r Dr (A.7)

the usual amplitude of the instanton is

e−Sinst = exp(−(VΠM
+ i

∑

r

qM,rar) ) (A.8)

This would seem puzzling, since this amplitude is not invariant under U(1)a gauge trans-

formations

e−Sinst → exp

(

− i
∑

A,r

NAqM,rpA,rΛA

)

e−Sinst = exp

(

− i
∑

A

NAIM,AΛA

)

e−Sinst

(A.9)
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The puzzle is solved by the fact that the instanton in general has fermionic zero modes

over which one should integrate. Namely, the sector of open strings stretching between the

euclidean D-brane and the Ath background D-brane leads to IM,A fermionic zero modes for

the instanton (here IM,a = 〈ΠM ,Πa〉), transforming in the bi-fundamental ( M , A). It is

convenient to split the set of DA-branes into two subsets, labeled by indices P , Q, with IM,P

and IM,Q positive and negative respectively. We also denote αP
iP

, βQ
jQ

the corresponding

instanton fermion zero modes, with the indices iP = 1, . . . , IM,P , jQ = 1, . . . , |IM,Q| labeling

the multiplitity in a given sector. Notice that due to the RR tadpole cancellation (A.2),

the numbers Nα, Nβ of positive and negative chirality fermion zero modes are equal

Nα − Nβ =
∑

P

NP IM,P −
∑

Q

NQIM,Q =
∑

A

NAIM,A = 〈ΠM ,
∑

A

NAΠA〉 = 0 (A.10)

In general, the instanton zero modes have non-trivial cubic couplings with fields ΦPQ
kPQ

,

with kPQ = 1, . . . , IPQ in the PQ open string sector of the background D-branes, of the

form

Sz.m. = diP jQkPQ
αP

iP
βQ

jQ
ΦPQ

kPQ
(A.11)

Integration over the Grassman variables α, β in the instanton path integral, leads to a

term proportional to the determinant of the N × N matrix Φ, with N =
∑

P NP IM,P =
∑

Q NQIM,Q. This term, which we denote (det Φ) for short, is a prefactor that accompanies

the exponential (A.8) in the complete instanton amplitude. Since it is roughly an order N

polynomial in fields in the AB sector, under the U(1) gauge transformations, it transforms

as

det Φ → exp

(

i
∑

P

NP IM,P − i
∑

Q

NQIM,Q

)

det Φ = exp

(

i
∑

A

NAIM,AΛA

)

detΦ

which precisely cancels the transformation of the exponential, leading to a gauge invariant

4d interaction.

A.2 Heterotic models

One can carry out a similar discussion for heterotic models (see [34] for early discussions).

In fact, compactifications of the heterotic strings with U(N) gauge bundles (as opposed to

SU(N) bundles) lead to 4d theories with a structure of gauge factors (and most notably

of U(1) factors) similar to that in D-brane models in the previous section. This has been

discussed in [35]. This is nicely consistent with S-duality of type I and the SO(32) heterotic

models. In the following we focus on instanton effects on such geometric SO(32) heterotic

constructions.8

Focusing on abelian bundles, the backgrounds are most simply described by regarding

each of the Cartan generators QA of SO(32) as an antisymmetric 2× 2 block, which plays

8One can also consider the E8 × E8 theory, which is conceptually similar, with differences only at the

group-theoretical level
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a role similar to a D9-brane and its orientifold image in a type I compactification. Hence

a non-trivial abelian field strength 2-form

F =
16

∑

A=1

FA (A.12)

(where F represents an abelian SO(32) matrix and Fa is a SO(32) matrix with entries only

in the ath SO(2) block) is completely similar to turning on a field strength Fa in the ath

D9-brane (and −Fa in its image) in a type I model.

Moreover, the structure of 2-forms and their dual scalars in the 4d-theory is also similar

to that of type I models. In the KK reduction of the heterotic string, the 10d 2-form leads

to a universal 4d 2-form B0. In addition, one can integrate the 10d 6-form over the h1,1

independent 4-cycles Cr in the Calabi-Yau to obtain further 4d 2-forms

Br =

∫

Cr

B6 (A.13)

These 2-forms couple to the 4d U(1) gauge fields. These couplings arise from the 10d

Chern-Simons couplings

SCS1 =

∫

10d

B2 ∧ tr (F ∧ F ∧ F ∧ F )

SCS2 =

∫

10d

B6 ∧ tr (F ∧ F ) (A.14)

which are crucial for the 10d Green-Schwarz mechanism. Namely, the first leads upon KK

reduction to

SCS1,4d = NApA0

∫

4d

B0 ∧ FA (A.15)

with pA0 =
∫

CY
tr F 3

A . On the other hand, from the second kind of 10d coupling we obtain

the 4d couplings

SCS2,4d = NA pAi

∫

4d

Br ∧ FA (A.16)

where
∫

Dr

FA = pAr (A.17)

and Dr is the 2-cycle dual to Cr. As usual the Na factor arises from the U(1) normalization.

The dual scalars ar, therefore suffer a shift under U(1)A gauge transformations, given

by (A.6). For the scalars dual to the 2-forms Br, r 6= 0, the coupling to the U(1) factors

can be recovered in a language more familiar in the heterotic literature, as follows. The

field strength for the 10d 2-form roughly has the structure

HMNP = ∂[MBNP ] + A[M FNP ] (A.18)
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with the additional piece required to yield the anomalous Bianchi identity. The mixed

terms in the 10d kinetic term for HMNP lead to 10d couplings
∫

10d

d10x ∂[MBNP ] A[M FNP ] (A.19)

which upon KK reduction lead to the 4d couplings

NB pBr

∫

4d

d4x ∂µarAB,µ (A.20)

where ar =
∫

Dr
B2 is the scalar dual to Br above. These couplings are equivalent to (A.16),

and imply the mentioned scalar shift.

The shift of the scalars under U(1) gauge transformations renders the exponential am-

plitudes of certain instantons naively non-gauge-invariant. Specifically, the generic such

instanton will be a bound state of an euclidean NS5-brane wrapped on the whole Calabi-

Yau and euclidean fundamental strings wrapped on 2-cycles. This bound state admits

an explicit realization as a magnetized NS5-branes, namely NS5-branes with a non-trivial

background for its worldvolume symplectic gauge field. The discussion is however insensi-

tive to this detailed realization, and only depends on the vector of charges (q0; qi) of the

bound state (where q0 denotes the NS5-brane charge and qi the charge of fundamental

strings wrapped on Di. The naive amplitude of such instanton clearly shifts as

e−Sinst → exp(−i
∑

A,r

NAqM,rpa,rΛA) e−Sinst (A.21)

which is in fact identical to (A.9).

This phase will in fact be canceled by the appearance of spacetime charged fields, due

to integration over zero modes of the instantons. The microscopic description of instantons

with q0 6= 0 is not available, since it involves heterotic NS5-branes. The results for this

can nevertheless by derived by simply dualizing results from type I models, which we leave

as an exercise. We rather focus on the case q0 = 0 which is in fact very interesting since

it corresponds to a world-sheet instanton on the curve D =
∑

r qrDr, for which one has a

microscopic description. Thus we can directly compute the field-dependent prefactor and

verify the gauge invariance of the complete instanton amplitude.

In the fermionic world-sheet formulation of the SO(32) heterotic, there are 32 2d

fermions in the fundamental of SO(32), which couple to the spacetime gauge field A in the

adjoint as Aλλ. Let us label as λB , λB∗

, a = 1, . . . 16, and split the SO(32) adjoint field

accordingly. Then the coupling becomes

ABCλBλC + AB∗CλB∗

λC + ABC∗

λBλC∗

+ AB∗C∗

λB∗

λC∗

(A.22)

The analogy with an euclidean D1-brane instanton in a type I model should be clear at this

point. In fact, the KK reduction of the SO(32) gauge field in a given sector e.g. AB, lead

to 4d chiral fields φAB
kAB in the corresponding AB sector. Here the label kAB = 1, . . . , IAB

takes into account the multiplicity IAB given by the index of the Dirac operator for a field

with charges ±1 under U(1)A ×U(1)B . Also, the KK reduction of the 2d fermions e.g. λA
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Ni (n1
i ,m

1
i ) (n2

i ,m
2
i ) (n3

i ,m
3
i )

Na = 3 (1/β1, 0) (n2
a, εβ

2) (1/ρ, 1/2)

Nb = 2 (n1
b ,−εβ1) (1/β2, 0) (1, 3ρ/2)

Nc = 1 (n1
c , 3ρεβ1) (1/β2, 0) (0, 1)

Nd = 1 (1/β1, 0) (n2
d,−β2ε/ρ) (1, 3ρ/2)

Table 3: D6-brane wrapping numbers giving rise to a SM spectrum as in ref. [5].

lead to IM,A instanton fermionic zero modes, where IM,A is the index of the Dirac operator

for a field with charges +1 under U(1)A. Hence the instanton contains cubic couplings

among the IMA, IMB fermion zero modes α, β and the spacetime fields φ. The integration

over fermion zero modes leaves a determinant in the latter, whose transformation cancels

the phase of the exponential, as should be familiar by now.

An interesting point to emphasize is that, for q0 = 0, the relevant instantons are world-

sheet instantons, hence they are not suppressed by gs. Rather they are tree-level in the

string coupling, but non-perturbative in α′.

B. Some further intersecting brane examples

In this appendix we describe how neutrino Majorana mass terms may appear in the family

of models considered in [5]. We refer to that paper for notation and details. One important

difference with the family of models in the main text is that the SU(2)L gauge group comes

from a U(2)b group and the number of generations is fixed to three from the start. The

wrapping numbers of the SM D6-branes in this family of models are given by table 3. The

models are parametrized by a phase ε = ±1, four integers n2
a, n

1
b , n

1
c , n

2
d and a parameter

ρ = 1, 1/3. In addition βi = 1 − bi = 1, 1/2 depending on whether the corresponding tori

are tilted or not. Such classes of models have in principle up to four U(1) gauge fields,

but generically three of them acquire Stückelberg masses due to the B ∧ F couplings. In

particular one has

B1
2 ∧

−4εβ1

β2
F b

B2
2 ∧

(2εβ2)

ρβ1
(3F a − F d)

B3
2 ∧

1

β2

(

3β2n2
a

β1
F a + 6ρn1

bF
b + 2n1

cF
c +

3ρβ2n2
d

β1
F d

)

(B.1)

The four scalar fields ai transform with a shift under U(1) transformations as

a0 → a0

a1 → a1 −
4εβ1

β2
Λ(x)b

a2 → a2 +
2εβ2

ρβ1
(3Λ(x)a − Λ(x)d) (B.2)

a3 → a3 +
3n2

a

β1
Λa(x) +

6ρn1
b

β2
Λb(x) +

2n1
c

β2
Λc(x) +

6ρn2
d

2β1
Λd(x)
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There is just one linear combination of U(1)’s which remains massless. That linear combi-

nation is precisely the standard hypercharge U(1)Y as long as one has the constraint

n1
c =

β2

2β1
(n2

a + 3ρn2
d) (B.3)

It is easy to check that there is a unique factorizable 3-cycle which may be wrapped by a

D2-instanton with the required zero modes:

(n1,m1), (n2,m2), (n3,m3) = (3ρn1
b ,−β1), (ρn2

a, β
2), (−ε, 1/2) (B.4)

as long as

β1n1
c = 1 , ρn2

a = integer (B.5)

Such an instanton would generate a coupling

e−VΠM e
1
2
(6ερ2n1

b
n2

aa0−3ρn1
b
β2a1+ρn2

aβ1a2−2εβ1β2a3)νi
Rνj

R ; i, j = 1, 2, 3 (B.6)

which is fully gauge invariant. As an example consider the choice of parameters

n2
a = 3 ;n1

c = n2
d = β1 = 1 ;n1

b = −1 ; ρ = 1/3 ;β2 = 1/2 ; ε = 1 (B.7)

Then the relevant instanton M and branes c∗ and d have wrapping numbers:

M : (1, 1)(1, 1/2)(1,−1/2) (B.8)

c∗ : (1,−1)(2, 0)(0,−1) (B.9)

d : (1, 0)(1,−3/2)(1, 1/2) (B.10)

and IMd = −IMc∗ = 2, IMd∗ = IMc = 0, as required.

C. A µ-term example

Here we will provide an explicit MSSM-like example in which the conditions (4.3) for the

generation of a Higgs bilinear are met. We will consider the MSSM-like model in section

6.1 of [36], we refer the reader to that paper and the references therein for more details.

This is a toroidal Z2×Z2 orientifold with D6-branes with wrapping numbers as in table (4).

In order to cancel RR-tadpoles one can add a single coisotropic D8-brane stack as in [36]

or else two D6-brane stacks as in table 4, it is not relevant for the present discussion. The

gauge group after one takes into account those U(1)’s getting Stückelberg masses is that of

the SM plus an additional B−L (and a SU(2)X ’hidden sector’ group). Since in this model

B−L is massless the generation of a Majorana neutrino mass operator is not possible. The

spectrum may be found in table 5 of [36] (the multiplicity of the G, Ḡ states in that table

is 6 instead of 5 if we use D6-branes X,O instead of a D8-brane). It corresponds to a three

generation MSSM-like spectrum with a minimal set of Higgs fields H,H̄ plus additional

chiral fields transforming under the electroweak and the SU(2)X ’hidden group’. It can be

– 28 –



J
H
E
P
0
3
(
2
0
0
7
)
0
5
2

Ni (n1
i ,m

1
i ) (n2

i ,m
2
i ) (n3

i ,m
3
i )

Na = 6 + 2 (1, 0) (3, 1) (3,−1/2)

Nb = 4 (1, 1) (1, 0) (1,−1/2)

Nc = 2 (0, 1) (0,−1) (2, 0)

NX = 4 (−2, 1) (−3, 1) (−3, 1/2)

NO = 6 (1, 0) (1, 0) (1, 0)

Table 4: D6-brane wrapping numbers giving rise to the MSSM-like model in the text.

checked that this model preserves N = 1 SUSY and all RR-tadpoles cancel. It is easy to

check that a D2 instanton wrapping the 3-cycle M

M = 2(1, 0)(1,−1)(1, 1/2) (C.1)

has the appropriate intersection numbers in eq. (4.3), i.e. IMb = −1,IMb∗ = 0,IMc =

IMc∗ = 1. In addition it preserves the same N = 1 SUSY as the D6-branes. One has

Im SD2 = a0 −
1
2a1 so that under a U(1)b gauge transformation of parameter Λb(x) one has

SD2 −→ SD2 − i2Λb(x) (C.2)

so that indeed the operator exp(−SD2)HH̄ is gauge invariant under U(1)a,U(1)b, and U(1)c
as expected. However one can check that in the present example there are non-vanishing

intersections IMX = −4 , IMX∗ = 4 between the instanton and the auxiliary branes X (or

their coisotropic D8-brane analogues) which are added to cancel RR-tadpoles. This implies

that exp(−SD2) is also charged under U(1)X and that the actual operator which could be

induced will have and additional factor involving fields charged under the ’hidden sector’

gauge group U(2)X .
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